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Van der Waals (vdW) materials are featuring intertwined electronic order and collective phenomena.
Elucidating the dynamics of the elementary excitations within the fundamental electronic degrees of
freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to
elaborate the spin-orbital excitations of the vdW antiferromagnet FePS3 and their role for magnetism.
We observed the spectral enhancement of spin-orbital multiplet excitations at about ~100 and
~220meV, as well as the quasielastic response, when entering the antiferromagnetic phase with an
order-parameter-like evolution in temperature. By comparing with model calculations, we discovered
the trigonal lattice distortion, spin-orbit interaction and metal-ligand charge-transfer to be essential for
these emergent excitations. We further reveal their spectral robustness down to the few atomic-layer
limit by mechanical exfoliation, in accordance with the persistent antiferromagnetism reported
previously. Our study highlights the crucial role of lattice and orbital anisotropy for stabilizing the quasi-

two-dimensional magnetism and tailoring vdW magnets.

Magnetic van der Waals (vdW) materials have provided exciting new
opportunities in the studies of functional exotic magnetic phases of various
symmetry-breaking ground states and collective behavior'™. Under-
standing and controlling the spin state and the magnetic exchange inter-
actions are central to establish the next-generation spin-based
opto-electronics based on magnetic vdW materials. Recent studies with
both optical and X-ray spectroscopy have been utilized to assess the spectral
response of the magnetic and electronic configuration down to the few-layer
limit™®. These studies resolved the magneto-optical response of the lattice
vibrations, and the electronic valence states that give information on spin
and orbital configurations, respectively*’. However, severe challenges
remain for fully understanding the microscopic electronic energy scales in
magnetic vdW materials down to the exfoliated few-layer limit. Particularly,
many of the exotic spin phases that are of particular interest in realizing
spin-based devices occur in the atomically thin two-dimensional (2D) limit,
or in the presence of interlayer translational and angular misfit in vdW

heterostructures”’. Furthermore, dimensional reduction has been shown to
host strong electronic correlations. Advanced spectroscopic techniques with
sensitivity to the elementary excitations and the electronic order parameter
from the bulk to the few-layer limit of vdW materials are of urgent demand.

Here we present a temperature dependent study of the elementary
excitations of the vdW antiferromagnetic insulator FePS; using resonant
inelastic X-ray scattering (RIXS). FePS; crystallizes in a honeycomb lattice
exhibiting a planar zig-zag antiferromagnetic order with out-of-plane
moment orientation below 117 K and anisotropic change of the in-plane
lattice constants'®''. Raman studies revealed magneto-optical excitations
and phonon modes that signified the magnetic phase transition down to the
monolayer limit™’. This suggests FePS; as a robust layered nanostructure
building block for vdW spintronics. An important outstanding question
regards the underlying electronic and spin/orbital structure that enables
quasi-2D antiferromagnetism down to the few-layer limit. Such informa-
tion will guide future research on pathways to tune the low-energy
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instabilities in FePS;, which may provide crucial insight for device
applications.

The central question here is: how is the long-range magnetic order in a
quasi-two-dimensional lattice environment stabilized? Such long-range
order generally requires additional anisotropic interactions as governed by
the Mermin-Wagner theorem'. In low-dimensional spin systems, the
natural candidates that introduce anisotropy and symmetry-breaking are
the magneto-crystalline interactions. Specifically, the zig-zag magnetic order
and corresponding local structural nuances are expected to lead to spin-
lattice coupling'’. Pump-probe optical studies reported the ultrafast control
of antiferromagnetic order in FePSs, and revealed that the orbitals’ sym-
metries can be described by a trigonal distortion of the local FeS, cluster”
with signatures of phonon-magnon coupling'‘. However, Fe L;-edge X-ray
absorption spectroscopy (XAS) experiments have remained inconclusive on
whether the local C; lattice symmetry-breaking plays a significant role for
the emergent magnetic zig-zag orders®”. Despite the existing studies that
quantify the local site nuances beyond cubic-symmetry octahedral
environments'®", the exact electronic ground state can be sensitive to the
trigonal distortion and how it couples to magnetism, which has not been
quantified in a collective effort for FePSs.

To resolve these issues, we use Fe Ls;-edge RIXS to study the low-energy
excitations of FePS;. RIXS is a spectroscopic technique that probes the
dynamics of the elementary excitations in condensed matter'®". The two-
step scattering processes of RIXS grant access to a variety of charge-neutral
excitations. Transition-metal L-edge RIXS studies have revealed optically-
forbidden modes such as single magnon and multiplet excitations with spin-
orbital characteristics™, and were recently extended to studies investigating
few atomic-layer samples™' ™. Particularly, the low-energy spin-orbital
excitations have provided valuable information on the low-energy physics of
Fe-based correlated materials using RIXS, with strong temperature and
polarization dependence due to the presence of the ordered spin and orbital
texture’”. In this work, we report the temperature dependence of the
elementary excitations in bulk single crystals of FePS; using Fe L;-edge
RIXS. Around the Fe L;-edge XAS peak maxima (E; = 706.5 and 707.5 eV),
we observe two distinguishable modes at about ~100 and ~220 meV that
clearly evolve with the magnetic state of the material. These predominant
spectral peaks clearly suppress upon heating above the Néel temperature,
with a crossover-like behavior for the observed excitations. By comparison
to ligand-field calculations with charge-transfer configuration interaction,
we find that the ground state of Fe in FePS; originates from a °E; symmetry.
The first low-energy spin-orbital excitation at ~100 meV can be assigned to
excitations to the E; manifold that is split by spin-orbit interaction and
magnetic exchange interaction. The second low-energy spin-orbital exci-
tation at ~220 meV can be assigned to excitations to the *A; and 'A,
manifolds, which is split by the magnetic exchange interaction. Further-
more, the energy position of the ~220 meV feature is directly determined by
the magnitude of the trigonal distortion providing us with a robust quan-
tification of the distortion.

Importantly, we find that the trigonal C; distortion, spin-orbit cou-
pling, and metal-ligand charge-transfer are mandatory to reproduce the
observed doublet-peak profile with physically reasonable electronic para-
meters, as well as their temperature development across the magnetic phase
transition. Lastly, spectral comparison of bulk with exfoliated few-layer
samples reveals the robustness of the electronic structure down to 5
monolayers (MLs), giving an explanation of the reported persisting anti-
ferromagnetism in few-layer samples. Our findings provide a benchmark
for RIXS studies in vdW materials hosting magnetic order in general, and
shed light on the exotic spin-orbital ground/excited state properties
of FePS;.

Results

Overview of the experimental RIXS results

In FePS;, the Fe atoms are arranged in a honeycomb lattice with stacked
layers as shown in Fig. 1a. The magnetic structure has been confirmed to
have a collinear antiferromagnetic structure with the moments normal to
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the ab plane ™, also shown in Fig. 1a. The Fe L;-edge XAS spectra are shown
in Fig. 1c, which are in agreement with recent works*". The overall XAS
spectral shape indicates that Fe ions participate in a partially ionic bond as
evidenced by the sharp multiplet features in the energy range between 700
and 709 eV. In addition, spectral signatures of strong hybridization in the
bonds between Fe and S are also evident where there is a strong charge
transfer peak observed at the energy range between 709 and 714 eV. This
agrees well with literature on sulphide compounds®**’ and is confirmed by
our calculation where we found that the XAS spectra can be well reproduced
by d°+ d’L electronic configuration of the Fe** ions, where L denotes the
ligand hole state. (see Supplementary Fig. 6) We conclude that the electronic
structure of FePS; is best described with a | d° > + b | d’L > wavefunction,
where |af’ = 68.5% and |b|* ~ 31.5%, in order to reproduce the Fe L5 ,-edge
absorption profile (see later subsection “Calculated electronic and spin-
orbital states in the RIXS spectra”). We present RIXS measurements in the
experimental geometry depicted in Fig. 1b as a function of incident photon
energies E; across the Fe L;-edge XAS resonances at the base-temperature
20K in Fig. 1d (see same measurements above the antiferromagnetic
transition in Supplementary Fig. 2). We observed a series of localized
Raman-like excitations up to 3 eV and fluorescence-like excitations up to
about 5 eV energy loss. In a simplified high-spin octahedral crystal-field
environment, the Fe*" electronic ground state is formed from a °D group
(L =2) atomic multiplet, with the 5T2g ground state and first excited state of
°E, symmetry in the weak crystal field limit**. Indeed, the localized peaks
about 1 and 1.3 eV loss resemble the spin-allowed *T,, to °E, transitions™”,
with a suggested broadening for the 1 eV peak from the dynamical Jahn-
Teller effect”. In the higher-energy regime of 3-5eV loss, we observe a
fluorescence-like spectral response that is resonant about the post-edge
broad band in XAS (E;=710eV). These are reminiscent of the charge-
transfer processes that were previously attributed to transitions from the S
3p.p, orbitals to the empty Fe 3d shell, as well as the transitions from P-P 3p,
to S 3p! states’. At lower-energy loss shown in Fig. 1d, we observed a
peculiar spectral characteristics below 500 meV. These inelastic modes of
near-infrared energy range were not covered in previous theoretical or
experimental studies. To understand their nature and interplay with mag-
netism, we performed further temperature dependent RIXS experiments.

Temperature dependence of the experimental RIXS results
In Fig. 2, we show the temperature evolution of RIXS spectra taken at E; of
706.5 and 707.5 eV with both 7 and ¢ polarization for the incident X-rays.
These two resonant energies correspond to the Fe L;-edge XAS maximum B
and a pre-edge shoulder peak (A in Fig. 1c), where the predominant low-
energy excitations below 500 meV loss are enhanced in spectral intensities
(see RIXS spectra taken at other resonances in Supplementary Fig. 3). A
zoom into this low-energy regime is highlighted in panels separated from
panels of the higher-energy range above 1 eV loss. We observed two dis-
tinguishable energy loss peaks centering around ~100 meV and ~220 meV
energy loss. Here we designate the ~100 and ~220 meV excitations as peak 1
and 2, respectively (see fitting assignment in Supplementary Fig. 4). These
excitations are multiplet excitations due to the fine structure of crystal field
splitting, spin-orbit coupling effects and magnetic exchange interaction,
termed spin-orbital excitations as in Fe L;-edge RIXS studies on magnetite
Fe;0,”*. With increasing temperature, we found that peak 1 exhibits clear
suppression at both E; of 706.5 and 707.5 eV with 7 polarization. This
phenomenon becomes more drastic in vicinity to the magnetic phase
transition. While the same evolution can be observed for peak 2 at E; of
706.5 eV with 7 polarization, it becomes nearly temperature-independent
for E;=707.5¢eV. On the other hand, both peak 1 and 2 show less tem-
perature development with ¢ polarization. We note that the quasi-elastic
peak E undergoes a steep rise right after entering the high-temperature
paramagnetic phase upon heating above Néel ~120 K, which is stronger
with o polarization. Lastly, excitations above 1 eV energy loss exhibit weak
temperature developments in general.

These findings resemble the fine structure of active t, orbital energy
levels, which are sensitive to exchange fields, spin-orbit coupling and lattice
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Fig. 1 | Crystal structure, magnetic order, XAS and energy-dependent RIXS
overview, and scattering geometry. a Geometry of the Fe honeycomb plane and
interlayer antiferromagnetic structure visualized by the authors using VESTA®,
where green arrows show the direction of spin. b Schematics for experimental
geometry created by the authors using Abode Illustrator software package. XAS and
RIXS spectra were measured at an incident angle a = 12.5°. ¢ XAS in total electron
yield (TEY) of FePS; measured at 200 K, with the corresponding X-ray linear
dichroism (XLD). A =706.5 eV and B = 707.5 eV mark the two main incident

In(/) (arb. u.)

Energy Loss ( eV )

energies of interest as also highlighted in the RIXS map in (b) (black dashed hor-
izontal lines). d RIXS map of FePS; as a function of incident photon energy (left axis)
and energy loss (bottom axis). 7z polarization is employed in this measurement. The
RIXS intensity is plotted in logarithmic scale. This figure does not contain any
element that requires copyright permission, but only experimental data that the
authors measured or self-created schematic graphics that were not taken from other
sources.

distortions™**"*, The latter naturally connects to the discontinuous decrease
(increase) of magnitude in lattice constant a (b) at the magnetic transition™,
suggesting a possible magneto-restriction mechanism for the observed
temperature developments of the low-energy excitations peak 1 and 2. Such
strong spin-lattice coupling is evidenced by the previous high-field mag-
netization experiments and anisotropic exchange model calculations™”".
The incidence angle dependence with light polarization follows previous
studies on multiplet transitions of a FeS¢ cluster configuration (see Supple-
mentary Fig. 5). Lastly, the ~220 meV peak 2 is also broadly consistent with
the observed spectral profile in a former neutron study™. On the other hand,
the differences in the details of the temperature dependence (independence)
for peak 2 taken at E; = 706.5 (707.5) eV shown in Fig. 2a, b might relate to
the different intermediate and final states involved in the RIXS processes'®.
As for the elastic peak E enhancement upon heating, this phenomenon

resembles the increasing weight for the spin-singlet state in other reports™*’.

Calculated fitted electronic and spin-orbital states in the RIXS
spectra

To understand our RIXS inelastic response, we performed charge-transfer
multiplet (CTM) theory calculations to determine the electronic structure of
FePS; and pinpoint the interactions leading to peak 1 and 2. To begin with,
the ground state of a high-spin Fe*" ion (3d°) in cubic symmetry is *T,,
which is composed of 15 micro-states that are split due to magnetic

exchange interaction and spin-orbit coupling. The energy level diagram of
Fe** taking into consideration three charge transfer configurations, ie.
d°+ d'L + d’L* shown as a function of the octahedral crystal field parameter
(10D,) in Fig. 3a (dsé2 term was confirmed to be significantly smaller than
the d'L contribution, which agrees with former studies comparing 3d° high-
and low-spin transition-metal compounds*'). It is expected that the octa-
hedral crystal field is ~1 eV for TMPS; compounds (TM = Mn, Fe, Co, Ni)
leading to a high spin-ground state*. This leads to a situation where the 15
states belonging to *T, span the energy range 0-100 meV, followed by the
'A,, state which shows a strong dispersion as a function of 10D,. It is
important to note here that the lowered energy position of the 'A; state is a
direct consequence of the strong hybridization between Fe and S. More
details about the effect of charge-transfer can be found in the Supplementary
Fig. 8. Density plots of representative wave functions belonging to the *T,,
(in red box) and 'A, ¢ (in blue box) multiplets are shown at the top of Fig. 3a.

It is clear that an additional distortion is necessary to obtain the second
RIXS feature at ~ 220 meV. We investigated the effect of a trigonal distortion
on the FeSg local octahedral environment". Figure 3b shows the effect of the
trigonal distortion parameter, D, on the energy diagram. This is a new aspect
that was not observed for NiPS;", yet it agrees with most of the literature on
FePS;” including the very recent results of X-ray photoemission electron
microscopy on FePS,®. The trigonal distortion splits the °T,, multiplet to °E;
(10 states) and °A, (5 states) as shown in Fig. 3b. Here we found that the
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Fig. 2 | Temperature-dependent RIXS spectra. RIXS energy transfer spectra at
different temperature with 707.5 and 706.5 eV incident energy in (a, b) and (¢, d);
spectra recorded for ¢ and 7 incident X-ray polarization are shown in (a, b) and
(¢, d), respectively. Each graph has panels for the low-energy excitations below
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0.5 eV including the elastic peak E and spin-orbital peaks P1/P2 (left) and the high-
energy excitations up to 4.5 eV (right). All data was obtained at an experimental
geometry with 12.5° incidence angle.

distortion parameters D, and D, of -60 and 0 meV, respectively, with crystal-
field 10D, = 1 eV can explain our experimental data trend. This means that
peak 1 at ~100 meV corresponds to an excitation in to the higher-lying states
of the °E; multiplet. The energy splitting between the 10-fold °E, states is
determined by the magnitudes of the spin-orbit coupling and the magnetic
exchange interaction (see Supplementary Fig. 9). On the other hand, peak 2 at
~220 meV corresponds to an excitation mainly to the A, multiplet for which
its energy position is directly determined by the magnitude of the distortion
parameter D, and its splitting within the multiplet depends only on the
exchange interaction. A small shoulder can be observed at the high energy
end of peak 2 which corresponds to transitions to the 'A; state. Our quan-
tification of the magnitude of the distortion parameter is particularly robust,
as seen in Fig. 3b due to the direct relation of the energy position of peak 2 on
the magnitude of the distortion D,. A comparison between the experimental
and theoretical RIXS map is shown in Fig. 3¢, d, and reproduces the two low-
energy peaks 1 and 2. We conclude therefore that the presence of a local
trigonal distortion, spin-orbit coupling and charge-transfer is essential to
reproduce our experimental observation. An interesting aspect of our solu-
tion is the proximity of the 'A; state to the ground state with only 300 meV of
difference due to the strong hybridization between Fe and S. As the 'A; state
strongly disperses as a function of distortion, it becomes the ground state at
D, =50 meV (also see Supplementary Figs. 7-8).

We then compare the temperature evolution of the experimental RIXS
response and the calculated spin-orbital excitations. Full spectral compar-
ison and the respective fitted peak weight contribution are shown in Figs.
4 and 5, respectively. The elastic line contribution was subtracted from both
the experimental and calculated spectra. The overall lineshapes in the
experimental and theoretical spectra exhibit similar trends, indicating that

the key spectral features are well captured by the model simulations. In these
calculations, we include the magnetic exchange interaction between different
Fe sites on a mean-field Heisenberg level. The mean field magnetic exchange
interaction for site i is: Heyep,i=J22;<S;>-S; where j are the neighbor
equivalent Fe sites. Similarly for site j: Hexes; = J2; < S; > -S;. We solved these
equations self-consistently including the full Hamiltonian (i.e. crystal field,
electron-electron repulsion and spin-orbit coupling) at each temperature. To
verify our model, we computed the temperature behavior of the magnetic
susceptibility which agrees reasonably well with experimental data (see
Supplementary Fig. 11). Our theoretical model captures the main essence of
our experimental observations: (1) The intensities of the spin-orbital exci-
tations are strongly modified at the magnetic transition temperature, exhi-
biting a two-state like crossover. (2) The order of magnitude in intensity
changes and effects of light polarization are captured. The remaining dif-
ferences, including some intensity background sources that gradually change
with temperature without a steep trend at the magnetic phase transition, may
be attributed to additional factors like Boltzmann population broadening via
phonon coupling or short-range spin fluctuations. Neutron studies have
shown a Lorentzian-like quasi-elastic weight extending to ~40 meV and
persisting above the antiferromagnetic transition, suggesting possible non-
negligible short-range spin fluctuations in the paramagnetic phase* which
can not be captured by a simple mean field model (also see Supplementary
Fig. 12). Nevertheless, our experimental RIXS response can be reasonably
captured by CTM theory with a two-state crossover across the magnetic
phase transition, signifying an order-parameter-like development.

We remark that we do not focus on the temperature evolution of the
quasi-elastic peak E despite it showing a pronounced step like temperature
development when passing through the Néel transition temperature of
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Fig. 3 | Multiplet ligand field theory calculations. Energy level diagram of multiplet
states for Fe’" ions in FePS; together with the RIXS spectral response determining
the distortion parameters. a The effect of 10D, parameter representing the octahe-
dral crystal field varied from zero to 1 eV. b The effect of D, parameter representing
the magnitude of trigonal distortion. Representative charge density plots of the

multiplets are shown above color coded to the states. The color of the density plots
represents the spin projection where blue is down, gray is 0 and red is up. ¢ An

experimental RIXS map with incident photon energy in o polarization. d Full RIXS
map calculations around the Fe L;-edge. A set of distortion values of -60 and 0 meV
for D, and D,, respectively, were employed. The multiplet parameters were opti-
mized to quantitatively describe the experimental data after experimental resolution
broadening. The calculated intensities are averaged over 7 and o polarization for the
outgoing X-rays.

~120K as illustrated in Supplementary Fig. 10. Its intensity is affected by
several factors in our experiments, such as the non-resonant elastic X-ray
scattering, low-energy resolution-limited excitations (e.g. magnons',
phonons’, multiplet excitations™", etc), diffuse scattering due to sample
surface irregularities, self-absorption and saturation effects, etc. These fac-
tors are not included in our simulations, and hence it is very difficult to
understand the temperature dependence of the quasi-elastic and disentangle
these contributions. However, we propose that the strong temperature
dependence of the quasi-elastic peak E may be linked to proximity of the
'A,/°E, states, which can possibly be enabled by a small (dynamical) dis-
tortion switching the order of the states. In this picture, when entering the
paramagnetic phase, the restored degeneracy for the lowest-lying 'A,/°E,
ground states may lead to an enhanced spectral weight at zero-energy loss
(see Supplementary Section 5.2). It was rationalized that the high-
temperature paramagnetic phase could favor such raised symmetry for
s-wave like spin and orbital states”>*’. This scenario, however, would require
further investigations with significantly higher energy resolution.

Exfoliated thin flake RIXS response

Lastly, we assess the response of these spin-orbital excitations towards
the 2D limit by employing RIXS measurements in mechanically
exfoliated samples. In Fig. 6a, b, optical microscopy images and XAS
spatial mapping of the exfoliated samples are shown and cross-
compared for position registry. The sample flake preparation and
thickness characterization can be found in Supplementary Section 8
and Supplementary Fig. 13. The corresponding XAS and RIXS spectra
are shown in Fig. 6¢, d. We observe that the overall XAS spectra and
RIXS profiles extending to higher-energy excitations persist in the
exfoliated flakes of 50 atomic layers (50 ML) and atomically thin 5 MLs
thickness. In general, our results suggest the absence of large chemical
changes or other variation in these samples at the ultra-thin limit. This
shows that the multiplet excitation response, and thus the electronic
structure, of the bulk phase remains intact in the exfoliated thin flakes.
The low-energy peak 1 of the bulk phase (~100 meV) is more difficult
to assess in few-layer samples of 5 MLs due to the substrate diffuse
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Fig. 4 | Spectral comparison between experimental and theoretical RIXS response with temperature. Experimental and calculated spectra with elastic line subtracted at
different temperature, represented by different colors as denoted in (a). a-d show the experimental results, while (e-h) present the corresponding theoretical calculations.

(elastic) scattering and the correspondingly lower signal level. Never-
theless, the persistence of the multiplet excitation response may con-
tribute to the explanation of the robust antiferromagnetism in FePS;
down to the few-layer limit as observed in previous optical
measurements’.

Discussion

We demonstrate the versatile RIXS sensitivity to low-energy excitations
in vdW antiferromagnet FePS; from spin-orbital multiplet transitions
that grant access to the microscopic electronic interactions. The tem-
perature- and polarization-resolved RIXS measurements shows an
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experimental fitting spectra weights are shown as dots, while the calculation results
are represented by solid lines, with intensity scales on the left and right axes,
respectively. The antiferromagnetic ordering temperature ~120 K is indicated by a
black dashed line in all panels. The errors are standard deviations of the fitting
results.

evolution of the low-energy dynamics at ~100 meV and ~220 meV that
correlates with the development of the magnetic order parameter and
the underlying electronic wavefunction. From the observation of these
spin-orbital excitations registering the magnetic phase transition, our
study allows the assessment of the crucial role of trigonal local distor-
tions and the metal-ligand charge transfer. With the aid of ligand-field
theory calculations, we capture the essential electronic interactions that
stabilize the long-range antiferromagnetism in the quasi-2D limit,
which we find to persist in our RIXS and XAS measurements comparing
the bulk crystals and exfoliated 5 ML flake samples. Recently, RIXS has
been shown as a powerful spectroscopic tool to investigate electronic
structure and dynamics at distinct phases as a function of
temperature***. On this front, our major achievement constitutes the
investigation of the temperature evolution of spin-orbital multiplet
excitations probed by the RIXS cross-section, which directly reveal an
order-parameter-like development of the dynamical spectral weight
across the magnetic phase transition. The control of these ground state
properties is a prerequisite for material engineering utilizing spin-
lattice interactions and charge-transfer energetics, e.g. piezo-control
electronics with strain tuning, spin-flip photoluminescence sensors in
OLEDs and quantum sensing®’. Our work highlights RIXS as an ideal
investigation tool for studying the electronic structure of functional 2D
materials, featuring sensitivities to all electronic degrees of freedom
under flexible parameter control.

Methods

Resonant inelastic X-ray scattering experiment

Fe L;-edge resonant inelastic X-ray scattering (RIXS) and X-ray
absorption spectroscopy (XAS) experiments were performed at the
Advanced Resonant Spectroscopies (ADRESS) beamline of the Swiss

Light Source at the Paul Scherrer Institut™ ™. The total energy reso-
lution of the RIXS experiment was about 85 meV at the Fe L;-edge
(=707 eV). The RIXS spectrometer was fixed at a scattering angle
20=130°. An experimental geometry was used that was fixing the
scattering plane in the bc plane with the in-plane momentum transfer
along the crystallographic [010] direction, with an incidence angle of
12.5°. The corresponding momentum transfer vector q is [0, 0.844,
0.394], based on the space group C2/m, with lattice parameters
a=5.94(4) A, b=10.26(2)A, c=6.60(6) A, and f=108.3(7) A". RIXS
spectra were acquired with 15 (1) minutes for the temperature (incident
energy) dependent measurements, respectively, and normalized to the
incoming beamline flux. XAS spectra were recorded in total electron
yield (TEY) and total fluorescence yield (TFY) mode. Both 7 and o
polarization was employed for the incident X-rays. Unless specified, all
RIXS and XAS measurements were performed at the base temperature
at 20 K. Details on the synthesis of single crystal FePS; samples can be
found elsewhere'’.

Multiplet ligand field theory calculations

To understand the character of the low-energy excitations peak 1 and 2, we
employ exact diagonalization calculations within charge-transfer multiplet
(CTM) theory as implemented in Quanty” . The model reduces to a multi-
electronic calculation of a single FeSs cluster, accounting for the Fe-3d
orbitals and the corresponding symmetrized molecular orbitals from Fe 3d
states with hybridization to S 3p states”*”. The cluster has a trigonal-
symmetry which is quantified through three distortion parameters (D,, D,
and D,). Configuration interaction calculations taking into account (i) the
intra-atomic Coulomb interaction, (ii) the crystal field, (iii) charge transfer,
(iv) the mean field exchange interactions, and (v) spin-orbit interaction were
performed using the quantum many-body program Quanty’*". Briefly, the
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Fig. 6 | Exfoliated thin flake XAS and RIXS response. a The optical microscopy
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samples with 5 ML thickness on a SiO,/Si substrate. b Zoom-in region around the
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5 ML sample and the surrounding thicker bulk-like flakes, including the thickest
near the top left corner (50 ML), are highlighted by the red solid-line ellipse and
black dotted-line circles, respectively. ¢, d XAS and RIXS data recorded on exfoliated
50 ML and 5 ML samples at 20 K. RIXS data for 5 ML sample is scaled up in spectral
intensity for clarity in comparison.

Table 1 | Input parameter for multiplet calculations of Fe in FePS3

(eV) 10D, D,,D, A Va1, Vo1 Ve,Vp> Upa (™ Jexch SOC3qy
Initial 1 —0.06,0 0.98 1.5 0.7 - 5 0.012 0.052
Intermediate 1 —0.06,0 -0.55 1.5 0.7 6 5 0.012 0.0665

Here the trigonal crystal field parameters are given by 10D, D, and D:. The charge transfer energy and hybridization are given by A and V. The onsite energies are given by Upy and Ugq. The mean field

exchange field is Jexcn @nd the spin-orbit coupling constant is referred to as SOCsg.

ligand-field interaction is given by three different terms. These are the on-
site splitting on the transition-metal d-shell, the on-site splitting on the
ligand p-shell, and the hopping between the ligand p-shell and the
transition-metal d-shell. The ligand states in consideration are made of
linear combinations of interacting S-3p orbitals. This reduces the 36 S-3p
orbitals only to 10 interacting orbitals with the Fe-d orbitals. The on-site
energies can be related to the charge-transfer energy (A), and the d-d
Coulomb interaction (U) which includes exchange interactions following
the definitions by the original work of Zaanen, Sawatzky and Allen*. The
energy differences are referred from the center of the ligands and transition
metal sites after the application of the d-electron crystal field. The following
equations define the relation between U, (the on-site Coulomb repulsion
between two electrons on the metal d orbitals), A (the charge transfer
energy), and the onsite energies of the ligand (er) and d orbitals (¢;) with n

2+):

being the formal valency (n =6 for Fe

(10% A —nx (194 n)* Uy, /2)
(10 + n)

€d=

s ((L+m)* Uy/2—A)
L= (10 + n)

The value of mean field exchange J,.,.;, is adapted from a previous neutron
scattering study'’. The charge transfer and orbital hybridization are kept
fixed above and below the antiferromagnetic phase transition, while small
perturbations due to changes in surrounding spin environments may be at
play and would require future investigations”. The d—d and p—d
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multipole part of the Coulomb interaction was scaled to 80% of the Hartree-
Fock values of the Slater integral. Three charge transfer configurations were
taken into account in the calculations (ie., 3d" + 3d""'L + 3d""’L?). The
parameters used for the multiplet calculations are specified in Table 1.

Data availability

All data needed to evaluate the conclusions are present in the paper and/or
the supplementary information. The raw data files will be available upon
paper acceptance at a public repository with access link: https://zenodo.org/
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