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ABSTRACT: A new methodology based on an adaptive grid
algorithm followed by an analysis of the ground state from the fit
parameters is presented to analyze and interpret experimental XAS
L2,3-edge data. The fitting method is tested first in a series of
multiplet calculations for d0−d7 systems and for which the solution
is known. In most cases, the algorithm is able to find the solution,
except for a mixed-spin Co2+ Oh complex, where it instead revealed
a correlation between the crystal field and the electron repulsion
parameters near spin-crossover transition points. Furthermore, the
results for the fitting of previously published experimental data sets
on CaO, CaF2, MnO, LiMnO2, and Mn2O3 are presented and their
solution discussed. The presented methodology has allowed the
evaluation of the Jahn−Teller distortion in LiMnO2, which is consistent with the observed implications in the development of
batteries, which use this material. Moreover, a follow-up analysis of the ground state in Mn2O3 has demonstrated an unusual ground
state for the highly distorted site which would be impossible to optimize in a perfect octahedral environment. Ultimately, the
presented methodology can be used in the analysis of X-ray absorption spectroscopy data measured at the L2,3-edge for a large
number of materials and molecular complexes of first-row transition metals and can be expanded to the analysis of other X-ray
spectroscopic data in future studies.

■ INTRODUCTION
X-ray absorption spectroscopy (XAS) is an important
experimental tool to study the electronic structure of numerous
materials and of molecular systems based on transition
metals.1,2 XAS is an element-specific technique that can map
their corresponding contributions into low-lying empty
molecular orbitals. In particular, metal L2,3-edge XAS involves
the transition of a core electron from a 2p orbital in a transition
metal to molecular orbitals that are rich in metal-3d character.1

As it is subject to multiplet effects, the detailed interpretation
depends largely on our ability to calculate multiple electronic
states. Multiplet simulations are a relatively inexpensive
method to analyze X-ray data which have evolved over time
to incorporate different electronic structure effects relevant to
many body systems such as electron−electron interactions,
spin−orbit coupling, crystal-field interactions and charge
transfer multiplet effects to account for bonding interac-
tions.1,3−8 In this work we discuss the development of a
methodology for the automatic fitting of crystal field multiplet
simulations to calculated data sets in d0−d7 systems and to
experimental L2,3-edge XAS of calcium compounds and
manganese oxides and the implementation of this method-
ology in BlueprintXAS, software originally developed to fit

empirical models to X-ray data, with the purpose of reducing
user bias on the starting point and of evaluating uncertainties
in fitting parameters.9,10 The parameters optimized using this
methodology are the radial parameters F3d,3d

k , G3d,3d
k , 10Dq, Ds,

and Dt, using an adaptive grid algorithm discussed in the next
section. Originally, multiplet simulations were formulated to
reproduce the X-ray spectra of metal and transition-metal
oxides.1,11 It was based on the treatment of local metallic sites
within the structure of solids, ignoring intermetallic inter-
actions, and involving only atomic interactions: namely,
electron−electron interactions and spin−orbit coupling.
Then later on, also crystal-field interactions are introduced
based on the point-charge model originally proposed by Bethe
and van Vleck.12,13 This simple formulation was able to capture
the structure of X-ray absorption spectra of oxides at the L2,3-
edge (involving electric dipole transitions from core electrons
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in 2p shells to valence 3d shells of transition metals). Despite
being a calculation involving multiple electronic states
(multiconfigurational in nature), multiplet simulations are
inexpensive computationally, as they rely on the use of
empirical parameters, even though the physics describing the
interactions at the metallic sites is fairly complete.
Over the years, this method has been expanded to study the

electronic structure of covalent materials,5,6,14,15 of molecular
transition-metal complexes,16−19 and of biological systems
using the charge-transfer multiplet model.20−22 This model was
first applied to interpret XPS 2p data of covalent materials
based on transition metals to account for additional spectral
features that were observed which could not be accounted for
using the crystal field multiplet model.23−25 Later, the method
was extended to analyze the L2,3-edge XAS data of covalent
solids and transition-metal complexes in chemistry and
biology. For molecular systems, the method has been used
to interpret the experimental data of transition-metal
complexes containing not only donor ligands but also acceptor
ligands.17,19 The method has been successfully used to analyze
L2,3-edge-like cuts from 1s2p RIXS data collected in biological
samples,21 and recent developments have allowed an analysis
of systems where the local symmetry of the metallic sites are
subject to 4p−3d hybridization of the metal orbitals.22 All of
these developments make use of the original Cowan codes in
conjunction with the codes later developed by Butler and
Thole to mix charge transfer states.14,15,26 They also use the
projection method originally described by Wasinger et al. to
extract differential orbital covalency16 to be able to compare fit
simulations to DFT models. In addition, other groups have
developed their own codes with different purposes.7,8,27−31

More recent developments include approaches based on first
principles with the advantage of relying on structural models
and much less on empirical parameters, even though they
could be more expensive computationally.32−37 Herein, we
developed our own code in Matlab to be able to optimize the
internal processes of diagonalization of the initial and final
states with the idea of directly optimizing scaling factors, global
shifts, and broadening parameters using our optimizer
BlueprintXAS. The approach of calculating the spectra is
similar to that of Cowan, and the construction of operators is
analogous to that of Quanty in the sense that each operator is
represented as a matrix whose size depends on the number of
microstates in the initial and final configurations. Moreover, we
developed an adaptive grid algorithm capable of finding the
right combination of parameters that fit the L2,3-edge XAS of
transition-metal complexes. This algorithm consists of the
creation of an initial grid that is built with all the simulation
parameters ranging from lower to upper limits in step sizes
defined by the user. Based on the calculation of the spectra
from all combinations in the grid and the fitting of additional
parameters using a nonlinear least-squares method in each
case, the algorithm then calculates new grids in subsequent
cycles with increased precision for each parameter. We
demonstrate the applicability of the method on finding unique
solutions in many d0−d7 systems, and we also show when the
method leads to find multiple solutions whenever applicable.
We note here that the work presented represents a first step in
the development of a more comprehensive version that
includes charge transfer effects and 3d−4p hybridization,
both of which may be important in other spectroscopies for
covalent systems.

The approach presented here can be of great value to many
scientists in different fields who seek to obtain the electronic
structures of different materials and molecular systems directly
from experimental data but have encountered a challenge in
finding the right combination of parameters so that the
multiplet simulation properly fits the experimental spectra. In
this regard, another complication is the fact that finding a
combination of parameters does not necessarily ensure that
this would be the only solution. That is, since the experimental
data are obtained with only a certain resolution, there is an
uncertainty associated with each parameter that ideally needs
to be evaluated. We tested this by first fitting calculated data
sets for which we know the solution in two different scenarios:
one in which the calculations are broadened with a half-width
at half-maximum (hwhm) of 0.3 eV and another in which the
hwhm parameter is set to 0.8 eV. Our method allows not only
the calculation of uncertainties for each radial parameter but
also the possibility of exploring a large solution space where
other solutions may be possible, which would depend largely
on how structured the experimental data are to begin with. To
test that the algorithm is capable of finding the solution
starting with a large solution space, we fit calculated data sets
in d0-d7 systems based on Ti, V, Cr, Fe, and Co in different
environments for which the solution is known in advance. We
further fit multiplet simulations in previously documented
experimental data sets. We highlight here the solution found
for LiMnO2, which to our knowledge is the best solution found
so far from XAS for this material. This involved the
optimization of five radial parameters: that is, the scaling
factor for the Slater integrals F3d,3d

k , the scaling factor for F2p,3d
k

and G2p,3d
k , and the crystal field parameters 10Dq, Ds, and Dt.

From the solution found, we get a better idea of its electronic
structure which implies a large Jahn−Teller distortion
responsible for the challenges associated with swelling when
using this material in lithium batteries, in contrast to the use of
batteries based on cobalt, which are not as sustainable.38−40

This example further illustrates that, for a material subject to
Jahn−Teller distortions, finding a solution manually could be
challenging and the prospect of relying on an automatic
method to do so is of great value.
Finally, we also emphasize here that the method can be also

quite useful to study composite materials where more than one
site of the same metal can contribute to the XAS spectrum and
where the composition parameters are free-floating parameters
that can be optimized with infinite precision using our
methodology. We illustrate this in the analysis of the calculated
data for a mixed-valence material analogous to Prussian blue
and also in the analysis of the data for Mn2O3, containing two
different Mn3+ sites.
The present study focuses on the analysis of XAS data at the

L2,3-edge of materials based on transition-metal complexes
which are predominantly ionic in nature and for which we fit
crystal field multiplet simulations (instead of charge transfer
multiplet simulations). However, the same approach can be
extended to optimize charge-transfer and 4p−3d hybridization
parameters so that molecular systems in chemistry and biology
can be studied by fitting charge-transfer multiplet simulations
not only to XAS data but also to other X-ray spectroscopy data
available.

■ MATERIALS AND METHODS
Calculation of Electronic States in the Initial and Final

Configurations Using Crystal-Field Multiplet Simulations. The
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electron−electron interaction Hamiltonians e
rij

2
between any two

electrons, namely i and j and the crystal-field interaction of 3d
electrons in the metal and N point charges at distances of ai from the
metal are modeled using a multipole expansion in terms of a complete
series of spherical harmonic.3,13,41
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In the case of the electron−electron repulsion potential, the operator
e
rij

2
in eq 1 is now a function of the separated coordinates of electron i

(ri, θi, ϕi) and electron j (rj, θj, ϕj) which allows the evaluation of
matrix elements in the domain of each of these electrons. We note
here that r> represents the maximum between ri and rj (that is, the
maximum distance to the nucleus between that of electron i and that
of electron j). Similarly, r< represents the minimum between ri and rj.
This implies the evaluation of two integrals while evaluating matrix
elements from expression 1, one for all points (ri, rj) at which r> = ri
and r< = rj and another for all points at which r> = rj and r< = ri. In the
case of eq 2 corresponding to the crystal field potential, the
coordinates r, θ, and ϕ correspond to a 3d electron in the transition
metal and the expansion coefficients Akm are obtained by adding
together the value of the normalized spherical harmonic,

C( 1) ( , )m
k

m evaluated at every location of the N point charges.
That is

=
=

A C( 1) ( , )km
i

N
m

k
m

i i
1 (4)

The infinite expansions from eqs 1 and 2 get quickly truncated by the
symmetry properties of integrals of three spherical harmonics, which
restricts the values of k to be 0, 2, or 4 for nonvanishing terms in the
case of 3d electrons. Further symmetry restrictions under the
symmetry of the metal complex, which vanishes all terms containing
spherical harmonics not transformed as the totally symmetric
irreducible representation, significantly reduce the number of terms
in the final crystal field potential V CF

. In the case of a perfect
octahedral field with 6 point charges located at a distance a from the
metal center, eq 2 reduces to,
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whereas the crystal field of an octahedral complex under a tetragonal
distortion, which elongates or compress two of the charges located in
the z axis to distance b from the metal center, thus allows additional
terms by breaking the Oh symmetry to D4h
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Moreover, considering XAS L2,3-edge spectroscopy, the other
important atomic interactions at play are the spin−orbit coupling
for the 2p and 3d electrons, which are calculated from the
Hamiltonian
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Thus, the total Hamiltonian in the initial state |3dn⟩ is
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whereas the Hamiltonian in the final state |2p53dn+1⟩ is
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Thus, the task at play then is to obtain matrix elements from
Hamiltonians (8) and (9) applied over all microstates in the initial
|3dn⟩ and final |2p53dn+1⟩ states, recognizing that the obtained
matrices HINITIAL and HFINAL can be formulated as a sum of angular
matrices comprising each type of interaction multiplied by the
corresponding radial parameter

where F3d,3d
0 and F2p,3d

0 are chosen to center the multiplets
around the average energy of the initial or final states with

= + +F E F F
2

63
( )3d,3d

0
ave 3d,3d

2
3d,3d
4

(12)

= + +F E G G
1

15
3

702p,3d
0

ave 2p,3d
1

2p,3d
3

(13)

The graphical representations in eqs 10 and 11 imply larger-
sized matrices for the final state than for the initial state. The
actual size of the matrices depends on the number of
microstates in the initial 3dN and final 2p53dN+1 state
configurations.

Table 1 gives the number of microstates in the initial and final
states for initial state configurations 3d0−3d9. In our code, the angular
matrices depicted in color in eqs 10 and 11 for the different
interactions are calculated once and then stored. Then they are used
for crystal-field multiplet simulations by simply varying the radial
parameters, amplifying each matrix containing the angular part. The
diagonalization of matrices in eqs 10 and 11 then provides the
electronic states in each configuration as linear combinations of
microstates and corresponding energies as their eigenvalues.

Definition of Radial Parameters. The radial parameters, known
as Slater integrals, can in principle be computed from 3d and 2p radial
functions. These include F3d,3d

2 and F3d,3d
4 , (accounting for Coulomb

interactions between 3d electrons at the metal), F3p,3d
2 (accounting for

direct coulomb interactions between 2p and 3d electrons at the
metal), and G2p,3d

1 , G2p,3d
3 (accounting for exchange interactions

between 2p and 3d electrons at the metal). In addition, F3d,3d
0 and
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F2p,3d
0 can also be computed, but more commonly they are calculated

from other parameters corresponding to average energies of the initial
and the final states, according to expressions in eqs 12 and 13. The
Slater integrals are defined (in hartrees) as follows:1,3

= | | =<

>
+F R r R r

r

r
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(16)

Moreover, for the crystal-field interaction, using a 3d radial function
and a simple point-charge model, the following radial integrals can be
calculated for octahedral, tetragonally distorted, and/or square-planar
metallic sites (expressed in hartrees)
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where r represents the distance of a metal 3d electron with respect to
its nucleus, a represents the distance of the point charges
(representing the ligands) with respect to the position of the metal
nucleus (within an octahedral site) and also represents the distance of
the ligands in the xy plane (with respect to the metal nucleus) in a
tetragonally distorted octahedral or a square planar complex. Finally, b
represents the distance of the ligands in the z axis of a tetragonally
distorted octahedral complex.

In this work, we consider the direct optimization of Slater
parameters, F3d,3d

k , F2p,3d
k , and G2p,3d

k (scaled from Hartree−Fock
values), and of crystal field parameters 10Dq, Ds, and Dt, as empirical
parameters. However, this methodology can be also extended to
optimize instead the underlying radial functions 2p and 3d, metal−
ligand bond distances, and charge of the ligands (a, b, za and zb in eqs
17 and 18). For example, if hydrogen-like radial functions were to be
used with
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the effective “nuclear charge”, ζ3d, can be set up as one of the grid
parameters with the option of also including ζ2p. This approach is
utilized here to model the L2,3-edge XAS spectrum of Mn2O3,
specifically to account for the crystal field in the highly distorted Mn3+
sites, as discussed below.

Calculation of L2,3-Edge XAS Spectra. The L2,3-edge XAS
spectra are calculated according to the Fermi golden rule

| | | |I h T E E h( ) ( )
f

f i f i
2

(22)

where, hν is the energy of the absorbed photons, Ψi is the wave
function of the ground state in the initial configuration 3dN, and Ei is
the corresponding eigenvalue. Moreover, Ψf represents each of the
states in the final configuration, 2p53dN+1, and Ef represents the
corresponding eigenvalues. Accounting for natural broadening effects,
the Dirac δ function adopts the Lorentzian profile with a full-width at
half-maximum (fwhm) parameter Γf, giving
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(23)

Additional experimental broadening is accounted for with the
convolution of a Gaussian profile (given by eq 24) with the
Lorentzian-broadened spectrum, according to eq 25
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=V h G h L h h h( ) ( ) ( ) d( ) (25)

where the standard deviation (σ) in the Gaussian profile is related to
the fwhm parameter ΓG according to = 8 ln 2G . Moreover, the
Voigt profile from eq 25 implies that every point within a Lorentzian
profile and a natural broadening ΓL is broadened using a Gaussian
profile with experimental broadening ΓG so that the intensity of the
Lorentzian point is distributed according to the Gaussian profile,
centered around the Lorentzian point with broadening ΓG. An
alternative to the Voigt profile is the pseudo-Voigt profile, in which a
single broadening parameter (Γf) accounts for both sources of
broadening (natural and experimental) and is related to the final state
of the transition). In this profile the line shape is defined by the
parameter η, according to eq 26.

= +V h L h G h( , , ) (1 ) ( , ) ( , )f f f (26)

Thus, when η = 0, the pseudo-Voigt profile is fully Lorentzian and
when η = 1 the line shape is fully Gaussian.

Figure S1a shows the Lorentzian and Gaussian profiles compared
to a pseudo-Voigt profile with η = 0.5. Moreover, Figure S1b shows
three hypothetical spectral lines broadened with two different values
of Γ (fwhm) using the pseudo-Voigt profile with η = 0.2. The areas
under the curves in all cases are equal to the intensities of the spectral
lines. In this work, we use the pseudo-Voigt profile to broaden the
calculated spectral lines to produce each simulation. In this sense, the
Lorentzian broadening of this lines and the parameter η are both
optimized and set as free-floating parameters. For this, the broadening
parameter L3

for all lines at the L3-edge are set up to be all the same.
A different parameter L2

is used for all lines at the L2-edge, due to
Coster−Kronig Auger transitions (as additional paths for relaxation in
the final state of L2 states, compared to L3, which alters their core-hole
lifetimes42). To calculate the XAS spectra within the dipole
approximation, the transition operator T̂ is expanded in terms of
the weighted normalized spherical harmonics C1

−1, C1
0, and C1

+1 with

Table 1. Number of Microstates in the Initial (2p63dN) and
Final (2p53dN+1) State Configurations Involved at the L2,3-
Edge of the XAS of Transition-Metal Complexes.

no. of 3d
electrons, N

initial configuration,
2p63dN

final configuration,
2p53dN+1

0 1 60
1 10 270
2 45 720
3 120 1260
4 210 1512
5 252 1260
6 210 720
7 120 270
8 45 60
9 10 6
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from which we calculate a density matrix T. This relates each
microstate in the initial configuration 3dN with each microstate in the
final configuration 2p53dN+1 through the electric dipole transition
operator T̂. This matrix is unique and unchanged for a given 3dN

configuration and thus calculated once and also stored. Then, the
strengths of the transition lines are calculated from it using the
expressionwhere vector Ψi represents the ground state expressed as a

linear combination of microstates in the initial configuration 3dN and
Ψf is a matrix whose columns represent the states in the final
configuration 2p53dN+1, each expressed as a linear combination of
microstates in the final configuration. Thus, vector S contains the line
strengths which the code broadens using the pseduo-Voigt profile, as
given by eq 26. Effects of temperature are considered by calculating
line strengths from additional states Ψi in the initial configuration,
3dN, using a Boltzmann factor f( )Bi

given by
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y
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E E
k T

exp i
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0

B
i (29)

where E0 represents the energy of the ground-state multiplet in the
initial configuration.

Edge Jumps. In order to reproduce all the spectral features in the
experimental data discussed here, it is necessary to fit the L3- and L2-
edge jumps together with the crystal field multiplet simulations as part
of the physical model. The edge jump can be envisaged as a
continuum of electronic transitions ocurring from 2p levels to the
continuum where the ionized electrons would possess increasing
kinetic energies. Assuming then a pseudo-Voigt profile for each of this
continuum of transitions, the result is the cumulative pseudo-Voigt
function given by
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where EI is the inflection point of the edge jump which is related to
the ionization process of a 2p electron. In the case of L2,3-edge XAS,
two edge jumps often appear within the range of energy considered.
This is due to a large 2p spin−orbit coupling in the final state, which
implies the generation of states 2p3/2 and 2p1/2 after removing a 2p
electron. As these two states are split by 3/2ξ2p, the two edge jumps
should have inflection points EI and EI + 3/2ξ2p, respectively, for the
states 2p3/2 and 2p1/2, as shown in Figure 1. Moreover, the intensity
ratio between both edges I I( : )L L3 2

is expected to be 2:1, evaluated
from the ratio of multiplicities between the 2p3/2 and 2p1/2 states.
Ideally, the inclusion of these two edge jumps should contemplate
also the inclusion of a background function which slightly changes its
steepness after each of the edge jumps. However, very often the
background is removed as part of the initial reduction of the raw data.
Consequently, this could cause the intensity ratio during the fitting
procedure to not correspond exactly to the expected 2:1 ratio. In this
case, as we digitized the experimental data from previous studies
where the experimental data presented has been reduced (with the
background removed), we allowed the intensity ratio to be a floating
parameter to be fit along with the crystal field multiplet simulations.
We highlight here that this holistic approach of fitting the edge jumps
together with the simulations is useful to define the inflection points

of the edge jumps corresponding to ionization energies which are
often correlated to oxidation states in the K-edge XAS analysis.
However, one important consideration from empirical observations is
that one should expect the two edge jumps to be positioned near the
corresponding bound transitions only if the material is considered a
good electricity conductor or if the compound involved is a molecular
species. On the other hand, if the material is a semiconductor or an
insulator, the position of the edge jumps can move significantly at
higher energies, to the point in which the L3-edge jump could be
visible at energies where the L2-bound transitions start to appear.
Consequently, the second edge jump would only be visible if enough
data are collected beyond the point at which bound transitions for the
L2-edge are visible. Thus, the correlations of energy positions of the
edges to effective nuclear charge (and oxidation state) in the L2,3-edge
are not as straightforward as in the case of the K-edge XAS analysis,
unless molecular species with similar structures are being compared.
The same would be true when comparing results for materials with
similar ligands and conducting properties. Herein, the fit models for
the experimental data sets included only the crystal field simulations
and the edge jump functions, as shown in Figure 1.

The Adaptive Grid Algorithm. We have implemented in Matlab
a crystal-field multiplet model to simulate X-ray absorption spectra at
the L2,3-edge of transition-metal complexes (that is, for the excitation
of a 2p electron in the metal to empty molecular orbitals with metal-
3d character). All operators for electron−electron, spin−orbit
coupling, and crystal field are represented with a matrix spanning
through a base of microstates whose size depends on the 3dN

configuration. Then, the magnitude of each interaction is amplified
by radial parameters that can be adjusted to fit the experimental data,
where radial integrals, as given by eqs 14−19, are treated as empirical
parameters. Traditionally, these are manually adjusted until the
simulation fits the experimental data. In the case of electron−electron
repulsion parameters (Slater integrals), the values obtained from
Hartree−Fock calculations (performed with the code developed by
Cowan3), are scaled down to about 80% to properly represent atomic
values.1,43 Then, they are scaled down further because of covalency. In
the case of parameters 10Dq, Ds, and Dt, as defined by eqs 17−19, they

Figure 1. L3- and L2-edge jump functions as part of the physical
model of MnO. Together with crystal field multiplet simulations,
these edge jump functions are used to fit the multiplet simulations to
the experimental Mn L2,3-edge XAS of MnO. A similar model is used
here for the analysis of the corresponding L2,3-edge XAS spectra of
CaO, CaF2 LiMnO2, and Mn2O3.
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are directly adjusted until the simulation fits the experiment. This
process could be very cumbersome, and some have even suggested
that finding a solution does not necessarily guarantee a single solution.
In this regard, we have made significant advances toward a
methodology that explores a large solution space for these parameters
and automatically finds good fits. For metal L2,3-edge XAS, our code
has been wrapped up as a function of BlueprintXAS9 so that we can
optimize simulation parameters effecting Hamiltonians in addition to
free-floating parameters such as scaling factors, global energy shifts,
and Lorentzian (natural) and Gaussian (experimental) broadening
parameters. Every transition is modeled as a pseudo-Voigt with a
common half-width at half-maximum parameter (referred here further
as hwhm) and a shape-related parameter (η) which weights-in the
Gaussian profile. For every combination of radial integral parameters,
free-floating parameters are optimized using a trust-region nonlinear
least-squares algorithm. BlueprintXAS is a Matlab-based optimizer
originally developed to analyze X-ray spectra using empirical peaks,
but with the advantage of obtaining multiple solutions in nonlinear
optimizations in order to explore large solution space regions, to
reduce user bias in the definition of the start point and to estimate
uncertainties for each parameter.9,10 In this work, BlueprintXAS
expands its capabilities to work in conjunction with an adaptive grid
algorithm, through its grid mode. In this mode, while the optimization
of parameters such as composition, scaling factors, broadening
parameters, and energy shifts are treated in the same way as in the
fit mode (the regular mode of BlueprintXAS), the nonadjustable
parameters by the trust-region algorithm are optimized by creating a
grid. Radial parameters as inputs of the multiplet simulations have an
effect on Hamiltonians and thus need to be defined as grid parameters
for which their optimization involves defining lower and upper
bounds and a given step size (precision) to generate a number of
points for each grid parameter. A mesh from the combination of all
points for every parameter is then obtained. If the step size is too
small, the number of points in the final grid is extremely large, so
much so that trying simulations of every point in the grid will require
months in some cases. Thus, we developed an adaptive grid algorithm,
which always starts with wider ranges for every parameter and
relatively large step sizes so that the final number of points in the grid
is reasonable (below 50000 points takes only a few days to solve).
Thus, after a first cycle, the program selects the best fits from which,
using the average and two standard deviations for every parameter, it
recalculates the lower and upper limits of the simulation parameters.
This increases the precision of the step size while maintaining the
same number of points in the final grid. The selection of good fits is
based on the sum of squared errors (SSE), defined as

= y fSSE ( )
i

i i
2

(31)

where yi represents a data point in the XAS spectrum and f i represents
a corresponding prediction from the model which includes the crystal
field multiplet simulation. Moreover, the total number of best fits is
selected by the user, but importantly, in order for the algorithm to
identify good regions within the solution space, the number of good
fits should be a fraction of the number of points in the grid. In this
case, the number of fits selected is set to be no more than 5% for the
examples presented in this study. Thus, the calculation of new limits
and step sizes for the grid in subsequent cycles is based on the average
and two standard deviations of the fit parameters within the selected
best fits. As this adaptive grid algorithm moves forward, the step sizes
in each of the radial parameters included in the grid become refined
and the lower and upper bounds are recalculated to obtain grids of the
same size in subsequent cycles. In this study we use 4 cycles for the
fitting of calculated spectra and 5 cycles for the fitting of all the
experimental data. As an example, consider Figure 2, which shows the
evolving adaptive grid created from parameters 10Dq and Ds, as were
used in the case of LiMnO2. In cycle 1, the original grid is formed
from the lower and upper limits of these parameters with a 10Dq value
ranging from 1.7 to 2.5 eV in steps of 0.1 eV (9 points) and with
values of Ds ranging from 0.2 to 0.5 eV in steps of 0.1 eV (4 points).
Thus, the size of the grid for these two parameters is 9 × 4 = 36

points. Then, after going through every point of the grid and
optimizing the free-floating parameters in the simulation, the best fits
are identified (shaded regions in Figure 2). From there, a new grid
with the same 36 points is generated but with a more precise step size
for each of the parameters. This process continues for a total of 5
cycles. Importantly, the grid shown in Figure 2 for LiMnO2 is not a
complete representation, as it only shows a map of the solution space
for two of the five parameters. The complete grid parameters for this
compound are given in Table 4. The contour plots in Figure 2 within
the grid of each cycle are not representations of errors but instead
representations of where the best fits are located. In this sense, the
results discussed in the next sections are then a representation of the
local sensitivity based on the best fits rather than reflecting
uncertainties or confidence levels within a single global fit.

In this study, we use the adaptive grid algorithm to fit crystal field
multiplet simulations to find radial and free-floating parameters that
best fit the calculated XAS L2,3-edge based on known parameters for a
series of d0−d7 systems. These systems are based on Ti, V, Cr, Fe, and
Co in different symmetrical environments. Moreover, we use this
methodology to fit crystal field multiplet simulations to experimental
L2,3-edge XAS data for a series of previously published Ca and Mn
complexes. In the case of the Mn L2,3-edge XAS data, the fit model
included cumulative pseudo-Voigt functions to model the L3- and L2-
edge jumps, as discussed in the previous section. The next sections
discuss each of the data sets considered in this work, while Tables 3
and 4 give the lower and upper limits and the step size for each of the
parameters used in the fitting of all data sets considered in this work.
The size of the grid derived from the number of points for each of
these parameters is also given. Keeping in mind that one crystal field
simulation using our code takes less than 1 s, while the follow-up
optimization of the free-floating parameters such as scaling factors,
broadening, and energy shifts takes on average 10 s using a trust-
region nonlinear fitting algorithm, completing a job with the adaptive
grid algorithm for a calculation with a grid size of 1000 points would
take 1000 points/cycle × 10 s/point × 5 cycles = 50000 s or ∼14 h. A
quick tutorial of how to run these types of calculations in
BlueprintXAS is provided in section S10 of the Supporting

Figure 2. Adaptive grid algorithm showing 5 cycles of refinement, as
implemented in BlueprintXAS for the optimization of the crystal field
simulation to the experimental Mn L-egde XAS data of LiMnO2. The
step size for the values of the parameters 10Dq and Ds gets refined
after every cycle, according to the regions with the smallest value of
sum of squared errors (SSE) between simulation and experimental
data. The grid shown in this figure is a partial representation of a
much larger grid from the five parameters listed in Table 4 for
LiMnO2. The contour plots shown in each cycle are not
representations of errors but instead representations of where the
best fits are located (based on their SSE value).
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Information, where additional recommendations are made for large
grid sizes (with a large number of parameters and/or for cases in
which several components are involved.)

Calculated Data Sets. To test how effective and robust the
adaptive grid algorithm is in finding the solution for the radial and
free-floating parameters, a series of calculated data sets have been
created from known parameters based on d0−d7 systems of Ti, V, Cr,
Fe, and Co in different symmetry environments. Each data set was
broadened using two different values of hwhm, 0.3 and 0.8 eV, all with
Lorentzian line shapes. All calculated data sets were created assuming
a temperature of 10 K. In the case of d0 systems, Ti4+ is considered in
three different environments: (a) as a free ion, (b) in a nearly
octahedral environment (such as in the case of FeTiO3, and (c) in a
distorted-octahedral environment, such as in the case of TiO2. The
crystal-field parameters used to create these data sets are given in
Table S3. Additional data sets for d1−d4 systems based on the ions
V3+, V4+, Cr2+ and Cr3+ were all created in an octahedral environment
with a value of 10Dq = 1.5 eV and reduction factors for F( )d3d,3

k and

F G( , ( )k k
2p,3d 2p,3d equivalent to 80% with respect to Hartree−Fock

values. All created spectra in the series d0−d4 shown in Figure S2
display the same features reproduced before in previous studies for
the same parameters. For simplicity, in all these series the 3d spin−
orbit coupling parameter (ξ3d) is set to zero.

Furthermore, a Tanabe−Sugano diagram of Fe2+ computed with
F( )k

3d,3d = 80% (from the Hartree−Fock values) and with ξ3d set to
zero reveals a high-spin (HS) ground state (5T2) at 10Dq values below
ca. 1.8 eV and a low-spin (LS) ground state (1A1) above this value
(see Figure S3). Thus, we calculated data sets for Fe2+ octahedral
complexes with 10Dq values of 1.0 and 3.0 which originate from well-
established ground states. Table S3 gives the parameters utilized for

these calculations. We then calculated a phase diagram using
CTM4DOC44 to identify different ground states in Fe2+-D4h

Figure 3. (a) Phase diagram for Fe2+ complexes in D4h symmetry identifying regions of 10Dq and Ds where the ground state is 5B2, 1A1, 5E, and 3B2.
(b) Tanabe−Sugano diagram showing the energy of the multiplets for different values of Ds at a fixed value of 10Dq = 2.0 eV, where all 4 states in
the phase diagram in (a) are present. (c) Crystal field diagrams for the states highlighted with points in (b). (d) Corresponding L2,3-edge XAS
calculated from the identified ground states depicted in (c). The selected set of parameters used to create the data sets in (d) are given in Table S3.
Continuous lines represent the spectra broadened with a hwhm parameter of 0.3 eV, while dashed lines represent spectra broadened with a hwhm
of 0.8 eV.

Figure 4. Calculated data sets for the L2,3-edge XAS of a mixed
valence complex inspired by Prussian blue (top), showing the
contribution from the Fe3+ sites with a high-spin ground state
(center) and and the contribution from the Fe2+ sites in a low-spin
state (bottom). The parameters used for the Fe3+ and Fe2+ sites are
given in Table S3. The scaling factors used for each site correspond to
a stoichometric ratio of Fe3+:Fe2+ = 4:3. Continuous lines represent
the spectra broadened with a hwhm parameter of 0.3 eV, while dashed
lines represent spectra broadened with a hwhm of 0.8 eV.
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complexes by varying the value of 10Dq and Ds while maintaining the
values of F( )k

3d,3d at 80% (from Hartree−Fock values) and with Dt

and ξ3d set to zero. As shown in Figure 3a, there are 4 different ground
states within the explored region, including two different high-spin
states (5B2 and 5E), one low-spin state (1A1), and one intermediate-
spin state (3B2). At 10Dq = 2.0 eV, all four could be stabilized with
different values of Ds, as indicated in Figure 3b. Thus, we calculated
the L2,3-edge XAS of Fe2+ starting from each of the ground states
highlighted in Figure 3c (with values of Ds = −0.2, 0.2, 0.4 and 0.6
eV), obtaining the spectra shown in Figure 3d. Table S3 gives the
parameters utilized to calculate the corresponding L2,3-edge XAS
spectra. Like in the case of d0−d4 systems, in each of the Fe2+ cases
(Oh and D4h), we calculated a narrowed data set with hwhm = 0.3 eV
and a broadened data set with hwhm = 0.8 eV, using Lorentzian line
shapes.

Then, to increase the challenge for the adaptive grid algorithm, we
also calculated data sets for a complex or composite material inspired
by Prussian blue. In this case, the calculated Fe L2,3-edge XAS
corresponds to a mixture of Fe3+ and Fe2+ sites, both in an octahedral
environment. The Fe3+ contribution was calculated from a value of
10Dq = 1.0 eV, whereas the Fe2+ contribution was calculated using a
value of 10Dq = 4.0 eV. In both cases, the reduction of Slater integrals
was set to 80% with respect to Hartree−Fock values and the value of
the 3d spin−orbit coupling was set to zero. Moreover, to account for
the same 4Fe3+:3Fe2+ stoichometric ratio as in Prussian blue, the
calculated spectra for Fe3+, whose intrinsic intensity accounts for five
3d holes, was multiplied by a factor of 1, while the corresponding
spectra of Fe2+, whose intrinsic intensity accounts for four 3d holes,
was multiplied by a factor of 4/3. The resulting data sets (calculated
with a hwhm of 0.3 and 0.8 eV) as well as the contributing
components are shown in Figure 4. In the fitting procedure of these
data sets, in addition to optimizing the crystal field and the reduction
of Slater integrals for each Fe site (setting these as grid parameters),
the Lorentzian broadening (hwhm) and the composition (or intensity
ratio between the two sites) were also fit.

Finally, we created data sets based on Co2+, from which the ground
state is a mixture of high- and low-spin states enabled by the 3d spin−
orbit coupling interaction. In the absence of 3d spin−orbit coupling,
the low-spin (2E) and the high-spin (4T1) states states cannot mix.
However, once the 3d spin−orbit coupling of Co2+ is put on, the
direct product of the spin and orbital components in the 4T1 state
yields 4 states

=(G ) (T) (E ) (E ) 2 (G )8 3/2 4 1 6 1/2 7 5/2 8 3/2 (32)

Figure 5. (a) Tanabe−Sugano diagram for Co2+ within an energy
range near a spin-crossover transition point. The reduction parameter

F( )k
3d,3d and the reduction of the 3d spin−orbit coupling are

maintained at 80% with respect to the Hartree−Fock values, while the
value of 10Dq is increased from 2.0 to 2.5 eV. Below a value of 10Dq =
2.27 eV, the ground state is E1/2 (4T1). And for a value of 10Dq greater
than 2.27 eV, the ground state is G3/2 (2E + 4T1), resulting from the
mixing through the 3d spin−orbit operator. Exactly at 10Dq = 2.27 eV,
however, the ground state is a mixture of states, as indicated in Table
2. (b) L2,3-edge XAS of octahedral Co2+ complexes reproduced with
the same 10Dq value as in the vertical lines of the Tanabe−Sugano
shown in (a). The spectrum obtained with 10Dq = 2.27 was used to
test the grid algorithm, using two different Lorentzian broandenings.
Continuous lines represent the spectra broadened with a hwhm
parameter of 0.3 eV, while dashed lines represent spectra broadened
with a hwhm of 0.8 eV.

Table 2. Composition of the First Five Low-Lying
Multiplets in the Ground-State Configuration (d7) of Co2+,
Calculated with a Reduction in the Slater Integrals and
Spin−Orbit Coupling Equivalent to 80% of Their Hartree−
Fock Values, at Three Different Values of 10Dq: (a) Below
the Spin-Crossover Transition Point (10Dq = 2.25 eV); (b)
Exactly at the Spin-Crossover Transition Point (10Dq = 2.27
eV); (c) Above the Spin-Crossover Transition Point (10Dq
= 2.30 eV).

energy
(eV) multiplicity O′ term cubic term

Oh crystal field
configuration

(a) 10Dq = 2.25 eV
−3.997 2 Γ6(E1/2) 4T1 100% |t2g5eg2⟩ 95.5%

|t2g4eg3⟩ 4.5%
−3.987 4 Γ8(G3/2) 4T1 58.4% |t2g5eg2⟩ 55.4%

2E 41.6% |t2g6eg1⟩ 41.6%
|t2g4eg3⟩ 3.0%

−3.952 4 Γ8(G3/2) 4T1 87.5% |t2g5eg2⟩ 83.9%
2E 12.2% |t2g6eg1⟩ 12.2%

|t2g4eg3⟩ 3.9%
−3.901 2 Γ7(E5/2) 4T1 100% |t2g5eg2⟩ 95.9%

|t2g4eg3⟩ 4.1%
−3.842 4 Γ8(G3/2) 4T1 53.8% |t2g5eg2⟩ 51.6%

2E 46.2% |t2g6eg1⟩ 44.7%
|t2g4eg3⟩ 3.3%

(b) 10Dq = 2.27 eV
−4.012 4 + 2 Γ8(G3/2) +

Γ6(E1/2)
4T1 66.0% |t2g5eg2⟩ 62.9%

2E 34.0% |t2g6eg1⟩ 34.0%
|t2g4eg3⟩ 3.1%

−3.969 4 Γ8(G3/2) 4T1 91.3% |t2g5eg2⟩ 87.6%
2E 8.7% |t2g6eg1⟩ 8.7%

|t2g4eg3⟩ 3.7%
−3.916 2 Γ7(E5/2) 4T1 100% |t2g5eg2⟩ 95.9%

|t2g4eg3⟩ 4.1%
−3.865 4 Γ8(G3/2) 4T1 61.0% |t2g5eg2⟩ 58.4%

2E 39.0% |t2g6eg1⟩ 37.9%
|t2g4eg3⟩ 3.7%

(c) 10Dq = 2.30 eV
−4.052 4 Γ8(G3/2) 2E 65.0% |t2g6eg1⟩ 65.0%

4T1 35.0% |t2g5eg2⟩ 33.1%
|t2g4eg3⟩ 1.9%

−4.034 2 Γ6(E1/2) 4T1 100% |t2g5eg2⟩ 95.5%
|t2g4eg3⟩ 4.5%

−3.994 4 Γ8(G3/2) 4T1 94.5% |t2g5eg2⟩ 90.5%
2E 5.5% |t2g6eg1⟩ 5.5%

|t2g4eg3⟩ 4.0%
−3.939 2 Γ7(E5/2) 4T1 100% |t2g5eg2⟩ 96.0%

|t2g4eg3⟩ 4.0%
−3.898 4 Γ8(G3/2) 4T1 70.2% |t2g5eg2⟩ 67.9%

2E 29.8% |t2g6eg1⟩ 29.8%
|t2g4eg3⟩ 2.3%
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while the direct product of the spin and orbital components in the 2E
state gives a single state

=(E ) (E) (G )6 3/2 3 8 3/2 (33)

(For the convenience of the reader, a character table for the O′ double
group and a derived table for direct products in this double group are
provided in Tables S1 and S2.) This means that the G3/2 state in the
low-spin 2E state is allowed to mix with two of the states in the high-
spin 4T1 state. To chose the right value of 10Dq at which the spin
crossover occurs, a Tanabe−Sugano diagram is calculated near this
region using 80% for the reduction of Slater integrals and for the 3d
spin−orbit coupling of Co2+ (with respect to Hartree−Fock values).
As shown in Figure 5, it is necessary to set the value of 10Dq to 2.27
eV in order to have a calculation which reflects contributions from
both states. This is also evident from the composition listed in Table 2
for the first 5 low-lying multiplets in the ground-state configuration d7.
Thus, fitting the data sets created with a 10Dq of 2.27 represents the
most challenging case, as it requires finding solutions with a precision
of two decimal significant figures. Table S3 gives the parameters used
to create the Co2+ data sets discussed in this section.

In summary, to test the adaptive grid algorithm, crystal field
multiplet simulations were fit for all data sets calculated and are
shown in Figures S2 and S3 and Figures 3 and 4 and in the case of
Co2+ for the data sets shown in Figure 5 and calculated with a value of
10Dq = 2.27 eV only. In all cases, an initial wide range for all radial
parameters was used. All of these radial parameters optimized in each
case, along with the corresponding values for their lower and upper
limits and their step sizes to define the initial grids, are given in Table
3. In all cases, scaling factors and Lorentzian broadenings (hwhm)
were set as free-floating parameters.

Experimental Data. We also utilized the adaptive grid algorithm
to analyze previously published experimental L2,3-edge XAS data on
calcium and manganese compounds, finding new insightful

information, particularly in the case of LiMnO2 and Mn2O3. These
experimental data were digitized from previous contributions43,45

using the software webplotdigitizer. In the case of the data for Mn
oxides, it was necessary to use a stretching parameter as a free-floating
parameter, as the data appear to be stretched in comparison to the
simulations. Figures S4−S6 show the original data for MnO, LiMnO2,
and Mn2O3 as they appeared in the original publication compared to
the data after correction using a linear function that includes the
stretching parameter and a global shift, both of which are part of the
free-floating parameters with infinite precision. The corrected data are
consistent with the spectra obtained for MnO and Mn2O3 from more
recent studies.46 We hypothesize that the stretching correction
needed is due to early developments of sphere grating mono-
chromators (SGM) when XAS at the L2,3-edge of transition-metal
oxides was first developed as an experimental technique. Thus, we
emphasize here that, using our methodology, all the data collected in
beamlines with this type of instrumentation can be corrected to
account for this or similar issues related to energy calibration. To
model the experimental data sets, we included cumulative pseudo-
Voigt functions to account for the edge jumps in CaO, MnO,
LiMnO2, and Mn2O3, as described above. The inflection points, the
line widths, the line shapes, and the intensities of these edge jumps
were also fit as free-floating parameters together with the scaling
factors, energy shifts, and broadening parameters for the crystal-field
multiplet simulations. Table 4 gives the lower and upper limits and
the step sizes for all the grid parameters used during the fitting of each
experimental data set. In the case of the data for the calcium
complexes, three different models were tested to find if a different
scaling factor was needed for the Slater integrals F2p,3d

2 , G2p,3d
1 and

G2p,3d
3 . In the first model, all of these integrals are scaled using a single

parameter. Then, in the second model, the Slater integral F2p,3d
2

employs a different scaling factor than for G2p,3d
1 and G2p,3d

3 . And in the

Table 3. Grid Parameters, Their Initial Lower and Upper Limits, and Their Initial Step Sizes for the Fitting of All the
Calculated Data Sets Discussed in the Texta

Ti4+ systems

atomic Oh D4h

parameter lower upper step lower upper step lower upper step

10Dq 0.0 2.4 0.2 0.0 2.4 0.2 0.0 2.4 0.1
Ds −0.20 0.20 0.05 −0.20 0.20 0.05 −0.20 0.20 0.05
Dt −0.10 0.10 0.02 −0.10 0.10 0.02 −0.10 0.10 0.02
β(F2p,3d

k ,G2p,3d
k ), % 48 96 8 48 96 8 48 96 8

grid size: 9009 grid size: 9009 grid size: 9009
d1−d4 systems Fe2+-Oh (HS, LS) and D4h (5B2, 1A1, 5E, 3B2) Co2+-Oh (mixed spin)

parameter lower upper step lower upper step lower upper step

10Dq 0.0 2.5 0.1 0.5 3.5 0.1 1.6 3.0 0.2
Ds fixed at zero −0.70 0.70 0.05 fixed at zero
Dt fixed at zero −0.20 0.20 0.04 fixed at zero

F( )k
3d,3d , % 48 100 4 fixed at 80% 64 96 4

F G( , )k k
2p,3d 2p,3d , % 48 100 4 fixed at 80% 64 96 4

Red(ζ3d), % fixed at zero fixed at zero 0 100 20
grid size: 5096 grid size: 9889 grid size: 3888

4Fe3+ (HS):3Fe2+ (LS) system

Fe3+ Fe2+

parameter lower upper step lower upper step

10Dq 1.0 5.0 0.5 1.0 5.0 0.5

F F G( , , )k k k
3d,3d 2p,3d 2p,3d ,b % 64 96 8 64 96 8

grid size: 2025
aThe total grid size in each case is also provided. The values for reduction parameters F( )d3d,3

k and F G( , )k k
2p,3d 2p,3d given here correspond to the

reduction from Hartree−Fock values. bFor the 4Fe3+: 3Fe2+ system, a single parameter per site was set to collectively reduce all of the Slater
integrals (F3d,3d

k , F2p,3d
k , and G2p,3d

k ).
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third model, all of these integrals have their own independent scaling
factor.

■ RESULTS AND DISCUSSION
An adaptive grid algorithm to fit crystal field multiplet
simulations to L2,3-edge XAS data has been assessed, first
utilizing calculated data sets of d0-d7 systems in different
symmetry environments and from known radial parameters to
see how effectively the algorithm can find the solution. Then
fitting experimental data on Ca and Mn complexes was also
carried out, which included the edge jumps as part of the fit
model. In the case of the calculated data sets, two different
Lorentzian broadenings were fit to see how robust the
algorithm is in terms of finding the right solutions in fewer
resolved spectra.

Calculated Data Sets. d0−d4 Systems. Table S5 gives the
results obtained for the fitting of multiplet simulations to the
calculated data sets of d0−d4 systems. As shown in Figures S7−
S9, the adaptive grid algorithm developed in this work finds the
parameters of these systems remarkably well and it appears also
that the solution becomes even less disperse as more features
appear in the spectra on going from d0 to d4, regardless if the
spectra are broadened or not. The exception to this is the
broadened data set for Cr2+, which show a larger dispersion in
the fit parameters, particularly in the case of 10Dq and to a

lesser extent also in the case of the hwhm parameter. In this
regard, we found a correlation in the best fits between the
parameters 10Dq and hwhm (see Figure S10), which indicates
that for broadened spectra, it may be harder to define the
crystal field parameters with low uncertainties. This is again
observed for a couple of the data sets analyzed for Fe2+ (see
below).

Fe Systems. In the case of the Fe2+ data sets, which are very
sensitive to the spin-state in the ground state, as shown in
Figure S3 and Figure 3, the algorithm is able to successfully
find the right combination of parameters in all of the narrowed
data sets. This means that L2,3-edge XAS spectroscopy is very
sensitive not only to the spin state but also to small variations
in the crystal field, whenever there is a sufficient resolution of
spectral features (Figures S11 and S12 show representative
fits). Moreover, we also found that the developed adaptive grid
algorithm is robust enough to find very localized solutions in
most of the cases for the broadened data sets, with two
exceptions: for the case of Fe2+ in D4h symmetry with an
intermediate-spin (3B2) ground state and for the case of the
high-spin Fe2+ complex in octahedral symmetry. In both of
these cases, we observed a significant deviation in the value of
10Dq from the actual values (see Tables S3 and S6). In
addition, in the case of the Fe2+ in the intermediate-spin 3B2,

Table 4. Grid Parameters, Their Initial Lower and Upper Limits, and Their Initial Step Sizes for the Fitting of the
Experimental Data Sets Studied in This Worka.

CaO

model 1 model 2 model 3

parameter lower upper step lower upper step lower upper step

10Dq 1.30 1.60 0.05 1.30 1.60 0.05 1.30 1.60 0.05
β(F2p,3d

2 ,G2p,3d
1 ,G2p,3d

3 ), % 72 88 2
β(F2p,3d

2 ), % 72 88 4 72 88 4
β(G2p,3d

1 ,G2p,3d
3 ), % 64 96 4

β(G2p,3d
1 ), % 64 96 4

β(G2p,3d
3 ), % 64 96 4

grid size: 63 grid size: 175 grid size: 560
CaF2

model 1 model 2 model 3

parameter lower upper step lower upper step lower upper step

10Dq −1.00 −0.50 0.05 −0.95 −0.60 0.05 −0.95 −0.60 0.05
β(F2p,3d

2 ,G2p,3d
1 ,G2p,3d

3 ), % 72 88 4
β(F2p,3d

2 ), % 72 88 4 72 88 4
β(G2p,3d

1 ,G2p,3d
3 ), % 64 98 4

β(G2p,3d
1 ), % 64 98 4

β(G2p,3d
3 ), % 64 98 4

grid size: 55 grid size: 200 grid size: 1000
MnO LiMnO2 Mn2O3

parameter lower upper step lower upper step lower upper step

10Dq
b 0.88 0.96 0.02 1.70 2.50 0.1 1.0 1.6 0.1

α(F3d,3d
k ), % 72.0 88.0 0.8 56 80 8 48 80 8

β(F2p,3d
2 ,G2p,3d

1 ,G2p,3d
3 ), % 72.0 88.0 0.8 76 84 4 56 80 8

Ds 0.20 0.50 0.10
Dt 0.06 0.18 0.04
ζ3dc 5.5 6.5 0.2
zc 1.0 1.8 0.2

grid size: 2205 grid size: 1728 grid size: 4200
aThe total grid size in each case is also provided. The values for reduction parameters α and β are with respect to Hartree−Fock values. bIn the case
of Mn2O3 the value of 10Dq corresponds to the nondistorted Oh Mn3+ site. cζ3d corresponds to the effective nuclear charge of the radial function in
the Mn3+ distorted sites, while z is the average charge of the oxygen atoms surrounding these sites.
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we found an anticorrelation between the value of 10Dq and the
value for hwhm (see Figure S13), which implies that by slightly
broadening the spectrum more (in relation to its actual value),
it is possible to recover some of the intensity that would be lost
due to a smaller value of 10Dq. In general we expect that, for
broader spectra, similar correlations can be found. Moreover,
in the case of the broadened data set of Cr2+, for example, this
would not imply that different solutions are actually found.
Instead, one could say that the family of solutions around the
mean for these parameters are a measure of the uncertainty of
such parameters for spectra with poor resolution. This is not
the case in the broadened data set of Fe2+ with the 3B2 ground
state, as it actually impacts the accuracy of the final result for
10Dq (see Table S6.) Furthermore, in the case of the
broadened data set for the high-spin octahedral complex, we
also observed localized solutions with a low dispersion for all
crystal field parameters (10Dq = 0.94 ± 0.01, Ds = 0.02 ± 0.01
eV, and Dt = −0.01 ± 0.01 eV), which represent a slightly
different solution than the actual set of values originally
employed to create this data set. To investigate this further, we
calculated the L2,3-edge XAS spectra for a series of Fe2+
complexes in octahedral symmetry with a value of 10Dq
varying from 0.5 to 1.5 eV in steps of 0.1 eV. This series of
simulations was calculated with two values of hwhm (0.3 and
0.8 eV). The results of these additional calculations are shown
in Figures S18 and S19. In the vicinity of a 10Dq value of 1.0
eV (from about 0.8 to 1.1 eV), the spectra look in fact very
similar, particularly in the case of the broadened data set. From
this, it is clear that the adaptive grid algorithm is able to
capture the differences in the spectra with different values of
10Dq only in the case of the narrowed data sets. To investigate
this further, we use the crystal field parameters for the
representative fit shown in Figure S11 (that is, 10Dq = 0.94 eV,

Ds = 0.017 eV, and Dt = −0.012 eV) to run a single-point
calculation in CTM4DOC. From this, we found that the
ground state is composed of 100% the state |e b a bg

3
2g

1
1g

1
1g

1 or
5E with the first excited state (0.1 eV apart) being 100%
|b e a b2g

2
g

2
1g

1
1g

1 or 5A2. At 10 K, this excited state is
inaccessible (as weighted by the Boltzmann distribution).
However, with 10Dq = 1.00, Ds = 0.00 eV, and Dt = 0.00 eV
these two states would be equally probable at 10 K (weighted
only by their multiplicities of 10 and 5, respectively). Thus,
both will be contributing to the XAS spectrum. Therefore, the
solution found by the adaptive grid algorithm in this case is
fortuitous in the sense that other combinations of parameters
(of 10Dq, Ds, Dt, α(F3d,3d

k , F G( , )k k
2p,3d 2p,3d , and hwhm) will be

able to f ine-tune the spectral features within the vicinity of the
region of 10Dq considered (between 0.8 and 1.1 eV).
From this, it can be envisaged that, for other similar cases

where the spectra is relatively insensitive to small changes in
electronic structure, in combination with a poor resolution of
the spectral features, the adaptive grid algorithm will be able to
find approximate solutions, or in other words, multiple
solutions conveying a large uncertainty for the fit parameters.
Importantly, all these possible solutions would be consistent
with a common spin state, as the algorithm largely differentiate
the obtained solutions for each of the spin states considered
and given in Table S6.
On the other hand, as shown in Figure S14 and Table S7,

the adaptive grid algorithm is also capable of finding the right
composition in materials where more than one metallic site is
present, even in the case where the spectra are rather broad
with not as many resolved features (Figure S14b). In this
regard, not only is the right proportion found in the case of the
4Fe3+:3Fe2+ data sets but also the right combination of

Figure 6. Representative fits for the fitting of crystal field simulations to the calculated data sets of Co2+ in an octahedral environment with 10Dq =
2.27 eV. (a) Representative fits for fit calculations R1, R2, and R3 performed for the narrowed data set with hwhm = 0.3 eV. (b) Representative fit for
the fitting of the broadened data set with hwhm = 0.8 eV. (c) Observed linear correlation between the fit values of 10Dq and F( )k

3d,3d in all fit
calculations.
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parameters for each component is found, even though the
parameters found for Fe2+ exhibited a somewhat large
dispersion. We investigated this further and found a moderate
correlation between the parameter F( )k

3d,3d and the value of
10Dq (see Figure S15), which imply that, at large values of
10Dq (relative to the corresponding Slater integrals), the
spectra are relatively insensitive to changes in 10Dq near the
solution in the sense that this is close to a strong-field scheme
where the Slater integrals would have overall less influence.
Co2+ Mixed-Spin-State System. The case of the Co2+ data

sets is yet another case where the original combination of
parameters could not be found and where actually the
solutions deviate the most from the original combination of
parameters (see Tables S3 and S6). However, their collective
analysis has revealed an interesting correlation which should
not be unique to Co2+ but to any transition-metal complex in a
near spin-crossover transition point.
As shown in Figure 6c, a clear linear correlation is drawn

between the parameter 10Dq and F( )k
3d,3d in all the fits that

were calculated. To investigate this further, a total of three
independent fitting calculations were performed in the case of
the narrowed data set, labeled here as R1, R2, and R3. In
addition, the calculation for the broadened data set was fit only
once. While the three calculations for the narrowed version
converged nearly within the same region (particularly in the
case of R1 and R3), the solution for the broadened spectra
extrapolated the aforementioned correlation by finding
solutions at proportionally higher values of 10Dq and

F( )k
3d,3d . Then, a phase diagram calculation was performed

using CTM4DOC44 within the ranges of 10Dq and F( )k
3d,3d

obtained from these fits. This is shown in Figure 7, revealing
that all of the solutions found lay within a region where a single
spin state cannot be established. Clearly, the adaptive grid

algorithm is helping reveal spin-crossover transition points in
this case. Previously, Griffith,47,48 Orgel49 and König and
Kremer50 have established spin-pairing energies for d3−d7
transition-metal complexes, where a fixed ratio between the
crystal field parameter 10Dq and the Racah parameter B is
established for the spin-crossover transition point. Considering
configuration interactions, König and Kremer found that the
spin-pairing energy for a d7 complex occurs when 10Dq/B =
19.42 for whenever the ratio between Racah parameters C and
B is equal to γ = C/B = 4.0 and a value of 10Dq/B = 15.87 for γ
= 3.0.50 Thus, using the relationship between Racah
parameters, B and C, and the Slater integrals F3d,3d

2 and F3d,3d
4 1

=B F F1
49

5
4413d,3d

2
3d,3d
4

(34)

=C F
35

441 3d,3d
4

(35)

and using the values listed in Table S3 for F3d,3d
2 and F3d,3d

4 used
to calculate the spectra for Co2+, we found a value of B = 0.124
eV and a value of C = 0.457 eV, which yields a γ ratio value of
3.69. Then, from eqs 34 and 35, it is evident that this ratio
should remain the same in Co2+ as long as the scaling factors
for F3d,3d

2 and F3d,3d
4 are set to be the same, such as in this case.

Thus, a γ-weighted average for the spin-pairing energy is
calculated for γ = 3.69, giving

Figure 7. Phase diagram calculation for the ground-state of Co2+ in
octahedral symmetry computed with a fixed value for the 3d spin−
orbit coupling equivalent to 80% the Hartree−Fock value. The
correlation discussed between 10Dq and F( )k

3d,3d for Figure 6c) is
also included. Areas shaded in gray correspond to a well-defined 4T1

state (E1/2, with ca. 96% |t eg g2
5 2 and 4% |t e2g

4
g

3 ). Areas shaded in
black correspond to a well-defined 2E state (G3/2, with ca. 100%
|t e2g

6
g

1 ). Areas shaded in white correspond to near spin-crossover
transition points where the ground state is a combination of states.

Table 5. Composition of the First Two Multiplets in the
Initial State for Octahedral Co2+ using the parameters
obtained from the fit calculations to the narrowed data set
(R1, R2, and R3) and to the Broadened Data Set: (a)
Compositions Calculated from the Set of Parameters of the
Representative Fit of R1 and/or R3 Shown in Figure 6a; (b)
Compositions Calculated from the Parameters of
Representative Fit in R2 (Figure 6a, middle); (c)
Compositions Calculated from the Parameters of
Representative Fit to the Broadened Data Set (Figure 6b)a

energy
(eV) multiplicity O′ term

cubic
term

Oh crystal field
configuration

(a) R1 ≈ R3, 10Dq = 2.05 eV; α(F3d,3d
k ) = 72.4 %; Red(ξ3d) = 60%

−3.617 2 Γ6(E1/2) 4T1 100% |t2g5eg2⟩ 95.5%
|t2g4eg3⟩ 4.5%

−3.615 4 Γ8(G3/2) 4T1 50.9% |t2g5eg2⟩ 49.0%
2E 49.1% |t2g6eg1⟩ 47.7%

|t2g4eg3⟩ 3.3%
(b) R2, 10Dq = 2.15 eV; α(F3d,3d

k ) = 75.9%; Red(ξ3d) = 100%
−3.823 2 Γ6(E1/2) 4T1 100% |t2g5eg2⟩ 95.5%

|t2g4eg3⟩ 4.5%
−3.822 4 Γ8(G3/2) 2E 50.6% |t2g6eg1⟩ 49.1%

4T1 49.4% |t2g5eg2⟩ 47.4%
|t2g4eg3⟩ 3.2%

(c) Broadened, 10Dq = 2.41 eV; α(F3d,3d
k ) = 85.1%; Red(ξ3d) = 100%

−4.276 2 Γ6(E1/2) 4T1 100% |t2g5eg2⟩ 95.5%
|t2g4eg3⟩ 4.5%

−4.274 4 Γ8(G3/2) 2E 50.2% |t2g6eg1⟩ 49.0%
4T1 49.8% |t2g6eg1⟩ 47.3%

|t2g4eg3⟩ 3.2%
aThe two nearly degenerate low-lying multiplets in each case have the
same collective composition as the ground state listed in Table 2b:
that is, ca. 66% of 4T1 and 33% of 2E.
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= + =
D

B

10
0.69(19.42) 0.31(15.87) 18.32

q

(36)

This is a value in very good agreement with the ratio between
10Dq and B used to calculate the Co2+ data sets studied here.
That is

= =
D

B

10 2.27
0.124

18.21
q

(37)

which is also the same ratio found in all fits lying in the nearly
straight line shown in Figure 6. In other words, the slope for
this straight line is directly related to the spin-pairing energy

calculated by Kremer and König. Moreover, the composition
of the ground state found for 10Dq = 2.27 and F( )k

3d,3d = 80%
(see Table 2), in comparison to the composition found for the
first two multiplets in the initial state of the fits shown in
Figure 6 (see Table 5), reveals that indeed all these fits reflect a
similar HS (4T1)−LS (2E) composition of approximately 66%
of 4T1 and 33% of 2E, leading to a very similar shape in the
XAS spectrum, which is what ultimately drives the adaptive grid
algorithm in finding the solutions discussed here. Finally,
Figures S16 and S17 show that no other correlations are found
during the fitting procedure with the other two grid parameters

Figure 8. Average of fits of crystal-field multiplet simulations to the experimental Ca L2,3-edge XAS data of CaO (left) and CaF2 (right) for three
different models: (1) with a single β parameter ( F G G( , , )2p,3d

2
2p,3d
1

2p,3d
3 , top), (2) with two β parameters ( F( )2p,3d

2 and G G( , )2p,3d
1

2p,3d
3 , middle),

and (3) with three β parameters ( F( )2p,3d
2 , G( )2p,3d

1 and G( )2p,3d
3 , bottom).

Table 6. Comparison of Results for Models 1−3 in the Fitting of Crystal Field Multiplet Simulations to Experimental Ca L2,3-
Edge XAS of CaO and CaF2

parameter model 1 model 2 model 3

CaO
10Dq 1.42 ± 0.01 1.44 ± 0.01 1.44 ± 0.01

F G G( , , ), %2p,3d
2

2p,3d
1

2p,3d
3 71.3 ± 0.4

F( )2p,3d
2 , % 69.8 ± 1.8 74.4 ± 2.1

β(G2p,3d
1 ,G2p,3d

3 ), % 67.2 ± 0.5

G( )2p,3d
1 , % 68.7 ± 1.2

G( )2p,3d
3 , % 87.2 ± 5.0

CaF2

10Dq −0.81 ± 0.02 −0.81 ± 0.02 −0.80 ± 0.01

F G G( , , ), %2p,3d
2

2p,3d
1

2p,3d
3 83.7 ± 1.4

F( )2p,3d
2 , % 95.5 ± 0.4 92.3 ± 0.2

β(G2p,3d
1 ,G2p,3d

3 ), % 83.7 ± 1.0

G( )2p,3d
1 , % 82.5 ± 0.5

G( )2p,3d
3 , % 65.6 ± 2.7
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that were fit (that is, F G( , )k k
2p,3d 2p,3d and the reduction for

ξ3d). Importantly, the large uncertainty in F G( , )k k
2p,3d 2p,3d

further reveals that the refined solutions that were observed
while fitting other data sets discussed above for all the fit
parameters is largely obscured here by the sensitivity to the
mixture of spin states. The same is true for the reduction in the
3d spin−orbit coupling. Even though the spin−orbit coupling
operator is responsible for enabling the mixing of spin states in
the first place, it is enough for it to be larger than zero for the
mixing to occur at large near the spin-crossover transition
point. That is why the distribution of the fits shown in Figure
S17 reveals values for this reduction to be at least 20% (the
next point after 0% in the initial grid), with solutions being
found more frequently at higher values. This last observation is
more likely related to temperature. It has been documented
previously that each of the 4 states emerging from the 4T1
multiplet due to spin−orbit coupling in the 3d shell (that is,
E1/2, G3/2, G3/2′, and E5/2)

43,51 gives rise to a different L2,3-edge
XAS spectrum. Thus, the Boltzmann distribution of such states
can dramatically change the shape of the spectrum depending
on temperature. At 10 K, a reduction as low as 20% of the
atomic 3d spin−orbit coupling seems to be enough to keep the
first excited state sufficiently apart so that the dominant shape-
defining mixing is indeed between the nearly degenerate 4T1
and 2E states comprising the ground state.
Ultimately, the fitting of the calculated data sets presented

here broadly demonstrates the sensitivity of the adaptive grid
algorithm to find unique solutions in most cases, except in
those where the broadening may slightly impact the accuracy
and precision in the outcome of the crystal field parameters,
and more particularly in cases near a spin-crossover transition
point for which the dominant driving factor is the mixing of
spin states, where multiple combinations of crystal field and
interelectronic repulsion parameters are found. These results
also demonstrate that L2,3-edge XAS is a very sensitive
technique not only to the spin state but also to the fine details
in the ground state, as implied by the very localized solutions
for the crystal field parameters found in most of the cases
presented here.

Experimental Data Sets. We have further tested the
adaptive grid algorithm by fitting the experimental Ca L2,3-edge
XAS data of CaO, CaF2 and of Mn L2,3-edge XAS data of
MnO, LiMnO2 and Mn2O3.

CaO and CaF2. CaO and CaF2 are ionic materials with
crystal lattice structures consisting of octahedral and
tetrahedral sites, respectively. Thus, one of the parameters to
fit is the crystal field parameter 10Dq, which in the case of CaF2
adopts a negative value. Moreover, in ionic compounds of Ca2+
there are no electron−electron interactions between 3d
electrons and only the reduction of the 2p−3d interactions is
required in the final state configuration (2p53d1). One can in
addition distinguish the reduction in the interaction of 2p and
3d electrons. That is, use a single reduction parameter for the
direct Coulomb interaction parameter F2p,3d

2 and a different
parameter to reduce the exchange parameters G2p,3d

1 , and G2p,3d
3 .

Thus, we have explored three different models: (1) using a
single β parameter F G G(9 ( , , ))p d29p,39d

2
29p,39d
1

2 ,3
3 , (2) using

two β parameters ( F( )2p,3d
2 and G G( , )2p,3d

1
2p,3d
3 ), and (3)

using three β parameters ( F( )2p,3d
2 , G( )2p,3d

1 and G( )2p,3d
3 ).

Figure 8 shows the results for the three case scenarios in both
compounds, while Table 6 gives the obtained parameters for
each of the three models in each compound. These results
reveal an improvement when using two β parameters instead of
one in the quality of the fits, especially in the case of CaO, for
which the agreement between the fit simulations and the
experimental data is significantly improved within the range of
energy 346−350 eV. These results also show that the
agreement of the simulations with the experimental data is
insensitive to the use of three β parameters, in particular the
reduction parameter G( )2p,3d

3 , based on its much larger
uncertainty and the very similar result obtained when using
only two β parameters. Overall, it is the second model which
gives the best results in terms of the agreement between theory
and experiment, which indicates that the use of a different
reduction parameter for F2p,3d

2 and collectively for G2p,3d
1 ,G2p,3d

3

could be of benefit for cases in which the number of fit
parameters is not so large. In all cases, the reduction obtained

Table 7. Parameters Obtained in the Fitting of Crystal Field Multiplet Simulations to Experimental Ca L2,3-Edge XAS of CaO
and CaF2 Using Model 2, Where Two Different Values of β Were Utilized: One to Reduce the the Hartree−Fock Value of the
F2p,3d
2 Integral and Another to Reduce the Hartree−Fock Value of the G2p,3d

1 ,G2p,3d
3 Integrala

crystal field Slater integral spin−orbit coupling broadening

CaO
10Dq 1.44 ± 0.01 F2p,3d

2 2.65 ± 0.07 ξ2p 2.40 hwhm 0.36 ± 0.01
(69.8 ± 1.8%) (100%)

G2p,3d
1 1.69 ± 0.01 ξ3d 0.011 Gaussian weight 0%

(67.2 ± 0.5%) (100%)
G2p,3d

3 0.96 ± 0.01
(67.2 ± 0.5%)

CaF2

10Dq −0.81 ± 0.02 F2p,3d
2 3.63 ± 0.01 ξ2p 2.40 hwhm 0.20 ± 0.01

(95.5 ± 0.4%) (100%)
G2p,3d

1 2.10 ± 0.03 ξ3d 0.011 Gaussian 17.6 ± 0.1%
(83.7 ± 1.0%) (100%) Weight

G2p,3d
3 1.19 ± 0.01

(83.7 ± 1.0%)
aThe exact range of values for all the Slater integrals are listed. The spin−orbit coupling constants for Ca2+ were fixed to their Hartree−Fock
calculated value.
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is given with respect to their Hartree−Fock values. In terms of
the size of the grid, all models contained a maximum of 1000
points, and took less than 1 day to complete 5 cycles. In all
cases, a Lorentzian profile was used to optimize the broadening
parameters, giving a fwhm for the second and third model of Γ
= 0.724 ± 0.001 eV and of 0.662 ± 0.001 using the first model
in the case of CaO. In the case of CaF2 the transition lines are
fit with a pseudo-Voigt profile with a fwhm of Γ = 0.404 ±
0.001 eV and η = 0.176 ± 0.001. The increased broadening
observed for CaO in relation to CaF2 is likely due to the need
of charge-transfer effects in the case of CaO in order to
increase the number of underlying transitions, without the
need for a larger broadening. The overall better agreement of
the fits to the experimental data of CaF2 further confirms that
for CaO an improved model with charge-transfer effects would
be required to arrive at a better outcome. We emphasize here
that for CaF2 both of the reduction parameters are above the
typical 80% used to reduce the Slater integrals in the free ions,
which confirms the ionic nature of this compound. A full list of
the obtained parameters from the second model in CaO and
CaF2 is provided in Table 7. Finally, in the case of CaO, for
which the fit model needed an edge jump, such as that shown
in Figure 1, the energy position of the first edge (EI) was
consistently settled at a higher energy during the fitting
procedure of all three models, so that only one edge jump
ended up being necessary in the considered energy range with

EI = 352.28 ± 0.03 eV for model 1, EI = 352.27 ± 0.02 eV for
model 2, and EI = 352.25 ± 0.02 eV for model 3. On the other
hand, in the case of CaF2 no edge jump was necessary within
the energy range studied, likely due to its highly ionic
character, thus shifting the edge jumps to higher energy values.

MnO. In the case of MnO, three parameters are included in
the grid: (1) α, the reduction of the F3d,3d

k Slater integrals, (2)
β, the reduction of F2p,3d

2 , and G2p,3d
k parameters, and (3) the

value of 10Dq (Table 8). We note here that a different
reduction (with respect to Hartree−Fock values) is used for
interactions involving only 3d electrons and those involving
interactions between 2p and 3d electrons. This is because the
interactions between valence electrons should get reduced
more by covalency (nephelauxcetic effect). The grid used in
this case was created with more than 2000 points, and the
entire calculation (after 5 cycles of refinement) took less than 1
day, obtaining very localized solutions for each parameter,
with very low uncertainties: 10Dq = 0.94 ± 0.01,

= ±F( ) 76.7 0.2k
3d,3d %, and = ±F G( , ) 81.8 0.4k k

2p,3d 2p,3d

% (see Figure 9, top). The reduction is about the same as the
value estimated from experience (about 80%) to reach atomic
values.
Moreover, the trustworthy reproduction of all spectral

features, including those at the L2-edge (the cluster of states
at higher energies separated by the large 2p spin−orbit

Table 8. Parameters for the Fit Simulations of MnO, and LiMnO2 to Their Experimental Mn L2,3-Edge XAS Dataa

crystal field Slater integral spin−orbit coupling broadening

MnO
10Dq 0.91 ± 0.01 F3d,3d

2 7.91 ± 0.02 ξ3d 0.040 hwhm 0.31 ± 0.01
(initial) (76.7 ± 0.2%) (initial) (100%) (L3)
F3d,3d
4 4.92 ± 0.01 ξ3d 0.053 hwhm 0.51 ± 0.01

(initial) (76.7 ± 0.2%) (final) (100%) (L2)
F3d,3d
2 8.56 ± 0.02 ξ2p 6.845 Gaussian weight 0%

(final) (76.7 ± 0.2%) (final) (100%)
F3d,3d
4 5.32 ± 0.01

(final) (76.7 ± 0.2%)
F2p,3d
4 5.17 ± 0.03

(final) (81.8 ± 0.4%)
G2p,3d

1 3.77 ± 0.02
(final) (81.8 ± 0.4%)
G2p,3d

3 2.14 ± 0.01
(final) (81.8 ± 0.4%)

LiMnO2

10Dq 2.43 ± 0.07 F3d,3d
2 8.58 ± 0.29 ξ3d 0.046 hwhm 0.35 ± 0.02

(initial) (75.2 ± 2.5%) (initial) (100%) (L3)
Ds 0.36 ± 0.02 F3d,3d

4 5.37 ± 0.18 ξ3d 0.059 hwhm 0.56 ± 0.03
(initial) (75.2 ± 2.5%) (final) (100%) (L2)

Dt 0.13 ± 0.01 F3d,3d
2 9.18 ± 0.31 ξ2p 6.845 Gaussian 0%

(final) (75.2 ± 2.5%) (final) (100%) Weight
F3d,3d
4 5.75 ± 0.19

(final) (75.2 ± 2.5%)
F2p,3d
2 6.04 ± 0.11

(final) (86.4 ± 1.6%)
G2p,3d

1 4.47 ± 0.08
(final) (86.4 ± 1.6%)
G2p,3d

3 2.54 ± 0.05
(final) (86.4 ± 1.6%)

aValues for the Slater integrals are given in eV and as a percentage of the Hartree−Fock values. Spin−orbit coupling values were not scaled in these
calculations.
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coupling), is very remarkable using this simple model.
Moreover, the inflection point (EI) of the L3-edge jump
settled in good fits at EI = 641.7 ± 0.01 eV. This is in principle
unexpected, as this edge jump usually appears higher (with
respect to the bound transitions) in other divalent metal
oxides. Notably in the case of NiO, for example, XPS 1s data
have been used in the past to establish the edge positions in its
L2,3-edge XAS data.52 Considering this, even when this
parameter is allowed to float initially (first cycle) only at
higher energies (ca. 644 eV), during the fitting procedure these
limits adjust back to lower energies during the adaptive grid
algorithm. Figure S20 shows, for example, the fit edge position
at EI = 644.64 ± 0.01 obtained after 3 cycles for a calculation
where the edge position is initially forced to adopt higher
energy values. In addition, Figure S21 shows the corresponding
representative fit simulation (including the edge jumps) to the
experimental data after 3 cycles. However, when this
calculation is finished (after 5 cycles), the fits again resemble
the edge positions shown in Figure 1 and with the fit
simulations again looking like that shown in Figure 9.
Ultimately, this demonstrates that the energy position of the
edge jump tries to compensate intensity not reflected by the
crystal field multiplet simulation performed in this study.
Despite the very close agreement, the overall agreement should
be improved if charge transfer multiplet simulations are used in
this case. This should, for example, improve the agreement for
the fitting of the feature at ca. 639 eV. Ideally, another
improvement is to include in the model the underlying
background, particularly when the raw data are available.
Otherwise, the propagation of errors during data reduction
leads to modified data sets which can make the procedure of
fitting edge jumps and simulations together more challenging.
LiMnO2. In the case of LiMnO2 (see Figure 9, bottom) the

L2-edge does not get reproduced on its entirety, but the
reproduction of all features at the L3-edge is also quite
remarkable and to our knowledge the best reproduction of this
spectrum. In this case, there were 5 simulation parameters

(including the crystal field parameters Ds and Dt) and hence
the use of a grid of nearly 2000 points was necessary. The total
calculation time is less than 2 days, and again, the obtained
results indicate well-localized parameters as oppose to several
families of possible solutions, giving 10Dq = 2.43 ± 0.07, Ds =
0.36 ± 0.02 eV, and Dt = 0.13 ± 0.01 eV, with

= ±F( ) 81 2k
3d,3d %, and = ±F G( , ) 86 2k k

2p,3d 2p,3d %.
Moreover, in these fits, the inflection point of the edge jump
was found at EI = 651.90 ± 0.07 eV. We emphasize here that
the results in this particular case show how the method is able
to detect distortion parameters with small uncertainties, in a
way similar to that in the analysis of the narrowed version of
the calculated data sets discussed above. The methodology
presented in this work shows that the interpretation of
experimental L2,3-edge XAS data for simple ionic materials
such as CaO, MnO, and CaF2 can be expedited, making it
possible to also evaluate uncertainties for the radial parameters
and to assess if multiple solutions could really exist based on
the exploration of a large solution space. In addition, this
example also shows that the adaptive grid algorithm is robust
and sensitive to evaluate distortion parameters Ds and Dt in
experimental data, which otherwise can be a daunting and very
time-consuming task. Precisely because of this difficulty, an
early analysis of the data for LiMnO2 suggested the mixing of
spin states (5B2 and 3E) in the ground state in order to explain
the observed shape of the spectrum43 without explaining the
very significant Jahn−Teller distortion, something that became
evident later for this material. The results obtained here for
LiMnO2 are indeed consistent with a large Jahn−Teller
distortion, as shown in the crystal-field diagram of Figure 10
deduced from the obtained crystal field parameters, 10Dq, Ds,
and Dt. A rough measure of the distortion is the very large
separation of b1g and a1g, which in the case of a perfect
octahedral complex would be zero. A follow-up analysis of the

Figure 9. Average of best fits of crystal-field multiplet simulations to
experimental Mn L2,3-edge XAS data for complexes MnO (top), and
LiMnO2 (bottom).

Figure 10. (a) Crystal-field diagram for LiMnO2 showing a tetragonal
distortion on going from a purely octahedral Oh complex to a D4h
complex with parameters 10Dq = 2.43, Ds = 0.36, and Dt = 0.13. The
ground state is a well-defined 5B1 composed of 100% of the crystal-
field configuration |e b a bg

2
2g

1
1g

1
1g

0 , as obtained from CTM4DOC. (b)
The ground state depicted in (a) is substantially separated in energy,
at ca. 2.1 eV, from other low-lying multiplets, 3E and 5A1, consistent
with a well-defined ground state.
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multiplet structure using CTM4DOC44 with these crystal-field
parameters in combination with the average values obtained
for reduction parameters in the Slater integrals (α(F3d,3d

k , and
F G( , )k k

2p,3d 2p,3d ) reveals a ground state corresponding to 5B1

and composed of 100% the crystal-field configuration
|e b a bg

2
2g

1
1g

1
1g

0 . This is in fact a very well-defined ground
state where the 5 states comprising this multiplet are ca. 2.1 eV
apart from the closest two multiplets: 3E (composed of 92% of
|e b a bg

3
2g

1
1g

0
1g

0 , 4 % o f |e b a bg g g g
1

2
1

1
2

1
0 a n d 2% o f

|e b a bg
3

2g
0

1g
1

1g
0 ) and 5A1 (composed of 100% of the crystal-

field state |e b a bg
2

2g
1

1g
0

1g
1 ). The difference in energy between

the ground-state 5B1 multiplet and the 5A1 multiplet of 2.09 eV,

which effectively corresponds to the transition of the unpaired
electron in the dz2 orbital to the dx y2 2 orbital, is equivalent in
energy to 4Ds + 5Dt = 4(0.36) + 5(0.13). This result is in good
agreement with previous results from diffuse reflectance data
collected on LiMnO2, which is consistent with an energy gap
of 1.92 eV.53 Ultimately, this analysis reveals a very large
distortion in LiMnO2 which explains the damage that may be
occurring in recharging batteries based on this material upon
changing the oxidation state of Mn back and forth between
Mn4+ and Mn3+. Recent studies have in fact proposed different
architectures to counterbalance the effect of this large
distortion in the deformation of these batteries.39,40

Mn2O3. Mn2O3 adopts the structure of the mineral bixbyite
and contains two different Mn3+ sites in its crystal structure.

Figure 11. (a) Approximate location of the distorted and nondistorted Mn3+ sites within a FCC unit cell of Mn2O3. (b) Structural detail of
distorted versus nondistorted Mn3+ in Mn2O3. (c) Average of best fits of crystal-field multiplet simulations to the experimental Mn L2,3-edge XAS
data of Mn2O3.

Table 9. Parameters for the Average of Good Fits of Crystal Field Multiplet Simulations to the Experimental Mn L2,3-Edge XAS
Spectrum of Mn2O3

a

crystal field Slater integral spin−orbit coupling broadening

10Dq 1.28 ± 0.01 F3d,3d
2 4.54 ± 0.15 ξ3d 0.040 hwhm 0.66 ± 0.08

(initial) (39.8 ± 1.3%) (initial) (100%) (L3)
z 1.67 ± 0.15 F3d,3d

4 2.85 ± 0.09 ξ3d 0.059 hwhm 0.90 ± 0.06
(initial) (39.8 ± 1.3%) (final) (100%) (L2)

ζ3d 6.25 ± 0.22 F3d,3d
2 4.86 ± 0.15 ξ2p 6.845 Gaussian 36.8 ± 10.9%

(final) (39.8 ± 1.3%) (final) (100%) Weight
F3d,3d
4 3.05 ± 0.10

(final) (39.8 ± 1.3%)
composition
SF1

b 1.74 ± 0.04 F2p,3d
2 4.66 ± 0.2

(distorted) (final) (66.6 ± 2.9%)
SF2

b 0.57 ± 0.05 G2p,3d
1 3.45 ± 0.15

(nondistorted) (final) (66.6 ± 2.9%)
ratio 3.1 ± 0.4 G2p,3d

3 1.96 ± 0.09
(final) (66.6 ± 2.9%)

aFor the crystal field parameters, the 10Dq value corresponds to the contribution of the nondistorted site while the values of z and ζ3d correspond
to the contribution of the distorted site. bSF1 and SF2 account for the scaling factors of the crystal field simulations corresponding to the distorted
and nondistorted sites, respectively.
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Both of the sites are in an octahedral environment, but one of
them is highly distorted, while the other is in a nearly perfect
Oh symmetry.54−56 Figure 11a shows the location of the Mn
sites within an approximate FCC unit cell (excluding the
location of the oxygen atoms for clarity), while Figure 11b
shows structural details around each site, contrasting the
structure of the distorted site with the site in a nearly Oh
symmetry (which we further refer to here as the nondistorted
site). According to Figure 11a, the proportion of distorted to
nondistorted sites in the structure of Mn2O3 should be close to
a 3:1 ratio. From the fit results, the estimated proportion
between both of these sites is deduced from the scaling factors
of the corresponding fit simulations. Remarkably, from the
obtained fits (Figure 11c), we have found a proportion of 3.1
± 0.4 (Table 9), in close agreement with the expected value.
Furthermore, according to previous studies, the magnetic
properties of Mn2O3 are dependent on temperature, with the
magnetic moment becoming zero above 80 K, while the
magnetic ordering is consistent with a collinear model deduced
from neutron diffraction data at low temperatures. This model
couples the spins of Mn3+ collectively for the nondistorted
sites, and in three separate groups it couples the spins for the
distorted sites.57 This means that the spin states for the
distorted and nondistorted sites in this material do not have to
be the same, which implies that, because of this derived
arrangement, the different Mn3+ sites can have different spin
states and still produce no magnetic field above 80 K. Thus,
this example further illustrates that the methodology described
in this work is useful to determine composition as well, for
example in doped or composite materials or in mixtures of
compounds where the existence of several type of sites is
expected.
To properly simulate the contribution of the highly distorted

Mn3+ site to the Mn L2,3-edge XAS spectrum of Mn2O3, the
crystal field potential is modeled using eq 2 by taking as a
reference the geometry of one of the highly distorted sites from
previous studies,56 as an approximation to the representation
of all the nondistorted sites in the material. The corresponding
crystal field potential for this site is given then by eq 38, where
the coefficients Akm

j for each of the six oxygen atoms
surrounding the Mn site are given in Table S9 and evaluated
from the x, y, and z coordinates of the oxygen ligands in the
structure provided in Table S10.
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+ + + +
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(38)

Moreover, the radial part of the potential was used together
with a hydrogen-like single-ζ radial function scaled by ζ3d
according to eq 20, in order to evaluate the matrix elements
corresponding to the crystal field potential. Thus, for the
distorted site, instead of optimizing the crystal field parameters
(e.g., 10Dq, Ds, Dt), the fitting of the corresponding simulation
requires the optimization of z and ζ3d as grid parameters. The
parameter z represents the absolute average value of the charge
of the oxygen ligands surrounding the distorted Mn3+ sites, for

which we initially used a range of 1.0−1.8 in steps of 0.2 (see
Table 4). Furthermore, in the case of the parameter ζ3d, we
initially used a range of 5.5−6.5 in steps of 0.2. We based this
initial range on the ζ3d value calculated from Slater rules for 3d
electrons in Mn3+, which corresponds to a value of 5.95 for the
initial state configuration. We note here that ai, which is the
distance between Mn and each of the oxygen atoms, is not a
parameter to optimize but instead a value calculated directly
from the crystal structure given in Table S10. Meanwhile, for
the nondistorted site, we used the standard crystal-field
potential for which we fit its 10Dq value. Common reduction
factors for α(F3d,3d

k ) and β(F2p,3d
k , G2p,3d

k ) were used for both
sites. Table 4 gives all the ranges and step sizes for all
parameters included in the grid and optimized using the
adaptive grid algorithm. Figure 11c shows the average of fit
crystal multiplet simulations for the distorted and nondistorted
Oh Mn3+ sites to the experimental Mn L2,3-edge XAS, and
Table 9 gives the results for all fit parameters using this model.
Moreover, the inflection point of the first edge jump within the
good fits (which averages the contributions from both Mn3+
sites) was found at 645.04 ± 1.99 eV, thus not a very well-
defined edge-jump position in this case.
Even though the reproduction of the experimental data is

reasonable, we note that the absence of many features in the
experimental data would tend to increase the uncertainty of the
parameters and the chances of getting multiple solutions by
using different models. In cases like this, where spectral
features are not well resolved, fitting at least another set of data
when available (for example, X-ray magnetic circular dichroism
(XMCD) or X-ray magnetic linear dichroism (XMLD))
together with the XAS would reduce the levels of uncertainty
and would allow a discrimination between several possible
models. In this case, the proportion found for the fit scaling
factors of both simulations nearly reproducing the 3:1
proportion from the crystal structure is a good marker for
this result but should not be taken as definitive. In this regard,
not all fits that were found have the same 3:1 ratio (which is
evident from the significant standard deviation of 0.4), which
implies that some of them deviate considerably despite having
a low SSE value. Figure 12a shows a phase diagram for
octahedral Mn3+ in the vicinity of the solutions found for 10Dq

and the reduction parameter, F( )k
3d,3d , showing also the

distribution of fits within the span of these parameters. We
found that all the solutions lay within a spin-crossover region
similar to the case of octahedral Co2+, but a bit more
complicated, as there are more states interacting. We have then
classified the fits according to the composition of their ground
state, in terms of the mixing of cubic term symbols 5E and 3T1

and/or octahedral crystal field configurations, |t e2g
3

g
1 and

|t eg2
4

g
0 . A representative fit for each family of fits is labeled as

(1)−(4). From these, the fit with a higher contribution of 5E in
the ground state is (1) with 84% of 5E and only 16% of 3T1. To
explore in more detail the mixing of spin states in the low-lying
multiplets found around this region, we also calculated
Tanabe−Sugano diagrams with α(F3d,3d

k ) = 38.2% (Figure
12b, top) and α(F3d,3d

k ) = 39.5% (Figure 12b, bottom), both
with respect to Hartree−Fock values. These diagrams show the
splitting of 5 states emerging from the 5E multiplet due to the
3d spin−orbit coupling. In the O′ double group, the spin
angular momentum basis for S = 2 in the 5E multiplet
transforms as the irreducible representations Γ3(E) and Γ5(T2)
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(see Table S1). Thus, from the direct product with the E term
corresponding to the orbital angular momentum part, 5 states
with the following symmetries are obtained:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
=3

5
3

1 2 3

4 5 (39)

In a similar way, the spin angular momentum basis for S = 1 in
the 3T1 term transforms as the irreducible representation
Γ4(T1). Then, from the direct product with the T1 term
corresponding to the orbital angular momentum part, 4 states
are derived (see Table S2):

=4 4 1 3 4 5 (40)

This means that the states Γ1, Γ3, Γ4, and Γ5 are allowed to mix
through the 3d spin−orbit coupling operator, while the Γ2
state remains pure. Table 10 shows the extent to which each of
these multiplets are mixed in the ground state for fits (1)−(4).
Moreover, the undistorted Oh Mn3+ contribution in the L2,3
XAS spectrum of Mn2O3 is a combination of the XAS
originating from the first five states weighted by the Boltzmann
distribution. The fits (1)−(4) along with the distorted and
nondistorted site contributions are shown in Figures S22a−
S25a, while the contributions to the undistorted spectrum from
the first five low-lying states (Γ1, Γ4, Γ3, Γ5, and Γ2) in fits (1)−
(4) are provided in Figures S22b,c−S25b,c. Moreover, the
Boltzmann factors used to scale the spectra originated from
these states are provided in Table 10.
Ultimately, the final shape in the contribution of the

nondistorted Oh Mn3+ site is very similar in fits (1)−(4) but

different enough to arrive to different proportions in the
scaling factors between the XAS of distorted and the
nondistorted sites. From this, fit (1) is the closest to a ratio
of 3 with a value of 2.98, compared to 2.78 in case of fit (2),
2.88 in the case of fit (3), and 3.66 in the case of fit (4). Taking

Figure 12. (a) Phase diagram for the undistorted Oh Mn3+ site in
Mn2O3 in the vicinity of the solutions found for 10Dq and F( )k

3d,3d ,
showing their dispersion within the best fits. Fits labeled (1)−(4) are
representative solutions with unique 10Dq/α(F3d,3d

k ) ratios and mixing
compositions. (b) Distribution of fits according to their values of
10Dq and α(F3d,3d

k ). (c) Tanabe−Sugano diagrams for the low-lying
multiplets in Oh Mn3+ for varying 10Dq values ranging from 1.1 to
1.45 eV calculated at a value of F( )k

3d,3d = 38.2% (top) and at a value
of 39.5% (bottom) with respect to Hartree−Fock values.

Table 10. Composition of the First Five Multiplets in the Oh
Mn3+ Site According to the Parameters in Fits (1)−(4)

energy
(eV) multiplicity O′ term cubic term

Boltzmann
factor

(a) Fit (1): 10Dq = 1.16 eV; α(F3d,3d
k ) = 38.2 %

−2.418 1 Γ1(A1) 5E |( t e )2g
3

g
1 , 84% 1.00

3T1 |( t e )2g
4

g
0 , 16%

−2.407 3 Γ4(T1) 5E |( t e )2g
3

g
1 , 90% 0.65

3T1 |( t e )2g
4

g
0 , 10%

−2.397 2 Γ3(E) 5E |( t e )2g
3

g
1 , 95% 0.44

3T1 |( t e )2g
4

g
0 , 5%

−2.392 3 Γ5(T2) 5E |( t e )2g
3

g
1 , 97% 0.36

3T1 |( t e )2g
4

g
0 , 3%

−2.386 1 Γ2(A2) 5E |( t e )2g
3

g
1 , 100% 0.29

(b) Fit (2): 10Dq = 1.23 eV; α(F3d,3d
k ) = 38.2%

−2.472 1 Γ1(A1) 5E |( t e )2g
3

g
1 , 71% 1.00

3T1 |( t e )2g
4

g
0 , 29%

−2.456 3 Γ4(T1) 5E |( t e )2g
3

g
1 , 81% 0.54

3T1 |( t e )2g
4

g
0 , 19%

−2.442 2 Γ3(E) 5E |( t e )2g
3

g
1 , 91% 0.31

3T1 |( t e )2g
4

g
0 , 9%

−2.435 3 Γ5(T2) 5E |( t e )2g
3

g
1 , 95% 0.24

3T1 |( t e )2g
4

g
0 , 5%

−2.427 1 Γ2(A2) 5E | e( t )2g
3

g
1 , 100% 0.17

(c) Fit (3): 10Dq = 1.30 eV; α(F3d,3d
k )=38.2 %

−2.540 1 Γ1(A1) 5E |( t e )2g
3

g
1 , 51% 1.00

3T1 |( t e )2g
4

g
0 , 49%

−2.517 3 Γ4(T1) 5E |( t e )2g
3

g
1 , 60% 0.41

3T1 |( t e )2g
4

g
0 , 40%

−2.493 2 Γ3(E) 5E |( t e )2g
3

g
1 , 78% 0.16

3T1 |( t e )2g
4

g
0 , 22%

−2.482 3 Γ5(T2) 5E |( t e )2g
3

g
1 , 84% 0.10

3T1 |( t e )2g
4

g
0 , 16%

−2.468 1 Γ2(A2) 5E |( t e )2g
3

g
1 , 100% 0.06

(d) Fit (4): 10Dq = 1.40 eV; α(F3d,3d
k ) = 39.5%

−2.708 1 Γ1(A1) 3T1 |( t e )2g
4

g
0 , 72% 1.00

5E |( t e )2g
3

g
1 , 28%

−2.680 3 Γ4(T1) 3T1 |t e( )g g2
4 0 , 67% 0.33

5E |( t e )2g
3

g
1 , 33%

−2.643 2 Γ3(E) 3T1 |( t e )2g
4

g
9 , 51% 0.08

5E |( t e )2g
4

g
0 , 49%

−2.630 3 Γ5(T2) 3T1 |( t e )2g
4

g
0 , 54% 0.05

5E |( t e )2g
3

g
1 , 46%

−2.594 1 Γ2(A2) 5E |( t e )2g
3

g
1 , 100% 0.01
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this additional criterion, we can assume that only the solutions
equivalent to fit (1) are correct. This criterion extends to the
additional fits lying along the same diagonal as fit (1) (in
Figure 12a that would be all fits with a constant 10Dq/ F( )k

3d,3d
ratio), This does not necessarily imply that that all the
solutions with the same 10Dq/ F( )k

3d,3d ratio and equivalent in
composition to fit (1) are the only viable solutions here, but it
is a helpful piece of information used here to identify the most
likely solutions.
On the other hand, the very strong reduction found here for
F( )k

3d,3d is likely imposed by the dominant contribution to the
XAS, which is coming from the distorted sites. Thus, a follow-
up analysis of the ground state in the distorted site using the
average values of Table 9, is consistent with the crystal field
diagrams of Figure 13a and the multiplet structure of the first

few states of Figure 13b. In the case of the distorted site, the
labels used in Figure 13b correspond to the dominant cubic
term symbol 5T2, which is practically pure for the ground state.
This is a rather unusual ground state for an octahedral complex
and is typical of high-spin Td complexs. The inspection of a
standard Tanabe−Sugano diagram for d4 identifies the ground
state as either the cubic term symbol 5E in high-spin complexes
or the cubic term symbol 3T1 in low-spin complexes, which are
the two states mixed in the undistorted site. In this case, the
ground state is a well-defined state consistent with the crystal-
field diagram of Figure 13a, where each of the 3di orbitals are
now a linear combinations of the well-known octahedral set
(3d , 3d , 3d , 3dxy xz yz z2, 3d )x y2 2 or alternatively a linear
combination of the complex spherical harmonics Y2

−2, Y2
−1,

Y2
0, Y2

1, and Y2
2, in combination with a radial function, R3d.

Using the crystal-field potential given in eq 38 with coefficients
Akm

j of Table S9 and the average values obtained for z and ζ3d

from Table 9, the linear combinations given in Table 11 are
obtained for each of the five 3d orbitals in the distorted site.

From this, while the first 4 orbitals imply linear combinations
of the octahedral orbitals, the fifth orbital appears to be
relatively pure and corresponds to the orbital 3dxz using the
framework of the structure provided in Table S10. As this
orbital coincides directly with the location of 4 of the 6 point
charges, this is then the most unstable 3d of the set and
unlikely to be occupied. All of this translates into the unusual
stabilization of the octahedral crystal field configuration
(t ) (e )2g

2
g

2, which explains the unusual shape for the
contribution of the distorted site into the Mn L2,3-edge XAS
spectrum. The electronic structure described above for both of
the Mn sites considers a common F( )k

3d,3d parameter, which
appears to be very low compared to other metal oxides,
including LiMnO2. Thus, as stated above, other solutions with
higher values of 10Dq and F( )k

3d,3d for the nondistorted site
cannot be discarded, as these solutions can be obtained, for
example, by using an independent F( )k

3d,3d parameter for each
site. Moreover, a refined radial 3d function with an increased
level of theory (other than using the single-ζ used here) can
also be employed. Another modification for the model is the
possibility of quenching the 3d spin−orbit 3d coupling as
another way to modulate the Boltzmann factors that weight the
contributions for the nondistorted sites. Ultimately, what this
example illustrates is that whenever the L2,3-edge XAS
spectrum is relatively featureless and there are many options
in the model for both of the metallic sites, the multiple solution
situation is difficult to rule out and the actual electronic
structure is difficult to assess. Moreover, the analysis of these
types of spectra will always need a careful follow-up analysis of
these solutions, as illustrated here, and of additional evidence
(data sets) to rule out some of the solutions.

Figure 13. (a) Crystal field diagrams for the distorted and
nondistorted sites of Mn3+ in Mn2O3 as obtained from the analysis
of the ground state of each site. (b) Energy diagram showing the
multiplet structure of the first few states, as obtained from the fit
parameters of Table 9. The ground-state analysis of the highly
distorted Mn3+ site is consistent with 100% of the cubic term symbol
5T2 and the crystal field configuration (t ) (e )2g

2
g

2. The ground-state
analysis of the undistorted Mn3+ site is consistent with a mixture of a
high-spin state 5E, (t ) (e )2g

3
g

1, and a low-spin state 3T1, (t ) (e )2g
4

g
0.

Table 11. 3d Orbitals for the Highly Distorted Site of Mn3+

in Mn2O3 Expressed as a Linear Combination of Spherical
Harmonics Y2

−2, Y2
−1, Y2

0, Y2
1, and Y2

2 in Combination with
a 3d Radial Function, as Obtained from the Ground-State
Analysis According to the Fit Results Given in Table 9 for
the Distorted Mn3+ Sitea.

aThe locations of the point charges are shown as reference from the
structure given in Table S10.
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■ CONCLUSION AND FUTURE DEVELOPMENTS
In this work, we propose a new methodology to analyze L2,3-
edge XAS spectra of transition-metal complexes. This involves
first the fitting of crystal-field multiplet simulations to the
experimental data using an adaptive grid algorithm. Then, it
also involves a follow-up analysis of the ground state based on
the fit parameters to deduce the electronic structure of the
studied complexes. We first fit calculated data sets for d0−d7
systems for which the parameters are known in advance in
order to test how effective the adaptive grid algorithm is in
finding the solutions. We further tested how robust the
algorithm is when the same set of calculations are purposely
broadened with a hwhm parameter of 0.8 eV. These examples
highlighted the sensitivity of L2,3-edge XAS spectroscopy, not
only to the spin state but also to the fine details in electronic
structure that come from slightly different crystal fields, and
they further demonstrate that the adaptive grid algorithm is
effective in finding unique spin-state solutions in practically all
cases, except for the Co2+ system, for which a mixture of states
was induced through 3d spin−orbit coupling. In such a case,
the adaptive grid algorithm found a very strong correlation
between 10Dq and F( )k

3d,3d corresponding to spin-pairing
energies for the d7 system, illustrating that for mixed-spin
complexes a multiple solution is possible. Furthermore, the
results on the broadened data sets demonstrate that the
adaptive grid algorithm was robust enough to find the solution
in most cases, except in those cases for which the spectrum
remains relatively unchanged with respect to small changes in
the crystal field and electron−electron repulsion parameters. In
such cases, the poor resolution seems to affect the outcome of
the solutions or else the L2,3-edge XAS is not sensitive enough
to discard small variations in the crystal field.
In the analysis of the results of CaO and CaF2 we tested

three models, from which we recommend that whenever
possible a different scaling factor for 2p−3d interactions should
be used for direct Coulomb parameters F2p,3d

k and exchange
interactions G2p,3d

k . Then, for MnO, LiMnO2, and Mn2O3 using
simple crystal field models we were able to reproduce the
experimental data remarkably well. Moreover, for LiMnO2 we
were able to obtain a very well defined ground state which
resulted from a very large Jahn−Teller distortion, consistent
with the observation of strain in batteries based on this
material. Finally, in the case of Mn2O3 the simulations from
two different types of Mn3+ was considered. The less abundant
is a Mn3+ site in a nearly octahedral symmetry, while the most
abundant type is a highly distorted Mn3+ site whose crystal
field potential was modeled from the geometrical positions of
the oxygen ligands. The results revealed that the distortion
around the highly distorted site stabilizes a 5T2, (t ) (e )2g

2
g

2,
state by maximizing the interaction of essentially the 3dxz
orbital with the most point charges. This state appeared to be
practically pure and is not achievable in a nondistorted Oh site.
Moreover, these results also showed that the ground state of
the nondistorted site is a mixture of 84% 5E and 16% 3T1, in
the fits more consistent with the actual composition of the
material. The fitting of Mn2O3 using two simulations serves as
an example that this methodology can be extended to the
analysis of mixtures of doped materials or of naturally
occurring materials with different metallic sites. However,
like in the case of the analysis of the Co2+ data set, the
methodology presented here is not capable of finding a unique
solution for Mn2O3, finding instead a correlation for the 10Dq/

α(F3d,3d
k ) ratio for the most viable fits, consistent with a mixture

of spin states for the ground state of the Oh Mn3+ sites. This
example also shows that the presented methodology has
important limitations whenever the studied spectrum is
relatively featureless and/or has a poor resolution. Finally,
the case of Mn2O3 also illustrates how crystal-field potentials
can be directly evaluated from geometrical models to study the
electronic structure in highly distorted environments such as
those appearing in many biological systems. This could shed
light on differences in reactivity based on specific electronic
structures optimized for a function that are a consequence of
specific protein environments. In this case, we have optimized
an effective nuclear charge, the ζ3d radial hydrogen-like
function given by eq 20, thus effectively using a single-ζ level
of theory to be able to evaluate the radial part of the crystal-
field potential, given by eq 38. This, however, can also be
extended to calculate the crystal field parameters of eqs 17−19
and the values of Slater integrals of eqs 14−16, all from
common radial 3d and/or common radial 2p functions using
higher levels of theory (other than single-ζ). This is the subject
of future contributions, for which other radial functions with
different shapes (such as those used in density functional
theory calculations) can be employed and their parameters
optimized with respect to experimental data or, alternatively,
use DFT models as a base for multiplet simulations.
The methodology presented here is currently being

extended to streamline in a similar way the use of charge
transfer multiplet simulations to analyze and interpret X-ray
data from which covalency could also be obtained and from
which radial functions can be further used to directly evaluate
the value of hopping parameters. The work presented here
explores cases for the first-row transition metals but could be
easily extended to other transition metals, as the matrices for
all operators are all the same and they only depend on the
number of d electrons. What would be different are the values
for the atomic parameters, which can be easily calculated by
other codes.26 The extension, however, to other spectroscopic
techniques and to lanthanides is under current development.
One potential issue that we anticipate in the extension of

this methodology to charge transfer multiplet simulations is the
increase in the number of parameters, which will then increase
the grid size and the overall computation time. However, it is
evident that certain spectroscopies such as XPS and XES are
very sensitive to covalency and to charge transfer and their
inclusion is really important, especially for molecular systems
with different types of bonding. Another issue is the possibility
of overparameterization, but this is something that depends a
great deal on the resolution of the data to analyze and the
insensitivity of the spectroscopy for certain types of
parameters, instead of the adaptive grid algorithm discussed
here. In this regard, the inclusion of different types of available
experimental spectra as well as the corresponding fit model, all
at once, would increase the sensitivity for more types of
parameters and would then reduce the chances of over-
parameterization. In addition to this, the idea of calculating all
radial parameters for all interactions involved in a particular
system, using common radial functions, will redirect the
problem of optimizing the parameters in the radial functions in
a cohesive way, as opposed to the optimization of independent
radial parameters. This redirection of the problem would
produce more coherent solutions among all the different radial
parameters. This type of strategy would be especially valuable
if the number of radial parameters to fit is too large.
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Finally, in the application of the adaptive grid algorithm to
charge transfer multiplet simulations, an important aspect to
assess is the possibility of multiple solutions between, for
example, charge transfer parameters and between crystal field
parameters and charge transfer parameters and their
importance and significance in terms of the electronic structure
of the studied systems. This is also the subject of future studies
in our group.
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