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ABSTRACT
The complex electronic structure of metallic ferromagnets is determined by a balance between
exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion.
By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorp-
tion spectroscopywith ab initio time-dependent density functional theory we analyze the electronic
structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distin-
guish transient broadening and energy shifts in the absorption spectra, whichwe demonstrate to be
captured by electron repopulation respectively correlation-induced modifications of the electronic
structure, requiring to take the local Coulomb interaction into account.

IMPACT STATEMENT
Wedemonstrate that local correlations are essential for the transient electronic structure of optically
excited Ni; paving the way for analyzing these interactions on their intrinsic timescales in correlated
materials.
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Magnetic order in the 3d transition metals Fe, Co, Ni
and their alloys arises from the effects of exchange inter-
action, local correlations, and the electronic band struc-
ture (electronic hopping) [1]. Solid state spectroscopy in
conjunction with advanced electronic structure calcula-
tions [2] resolves the underlying microscopic processes
in the thermodynamic ground state [3] as well as elec-
tron, spin, and lattice excitations [4,5]. For fcc Ni, the
imaginary part of the self-energy representing the scat-
tering rate � increases from the Fermi energy (EF) up to
2 eV above from 100meV to 500meV [2] or, following
τ = �/�, the scattering time τ decreases from 6 to 1 fs.
Time domain methods probe these ultrafast timescales
directly and have revealed the optically induced ultrafast
demagnetization of the 3d ferromagnets, i.e. the tran-
sient reduction of the magnetic moment due to fs laser
pulses mediated by spin-orbit interaction on ≈ 100 fs
and by spin wave excitations on several ps time scales
[6,7]. The underlying processes are based on spin-orbit
mediated spin flips [8–10], spin transfer [11–13], spin-
lattice coupling, and the principle of angular momentum
conservation [14,15]. However, a comprehensive pic-
ture of the transient electronic structure is still lacking
because the competition (or cooperation) of magnetic
order, local correlations, and the optical excitation in a
regime beyond a weak perturbation cannot yet fully be
accounted for.

Here, we establish the influence of local electronic
Coulomb interactions on the spin-dependent electron
dynamics in fcc Ni in the time domain. This finding is
based on exploiting high energy resolution in fs time-
resolved X-ray absorption spectroscopy (tr-XAS) exper-
iments at the Ni L2,3 absorption edges which we ana-
lyze quantitatively with ab initio time-dependent den-
sity functional theory (TDDFT) including local electron
correlations.

Figure 1(a) sketches the pump-probe experiment
which measures the temporal correlation of ultrashort
X-ray probe pulses tuned to the Ni L2,3 edges with near-
infrared pump pulses of photon energy hν = 1.5 eV, 35 fs
duration, and 12mJ/cm2 incident fluence as a function of
time delay �t. The core level resonance involves a tran-
sition from 2p3/2 (2p1/2) to 3d4sp final states at the L3
(L2) absorption edge. Thereby, we analyze the effect of
the optical excitation on the unoccupied 3d4sp electronic
density of states (DOS) through the time-dependent
absorption changes.

The experiments were performed at the Spectroscopy
and Coherent Scattering Instrument (SCS) of European
XFEL [16,17]. Spectra of 20 nm fcc Ni layers [18] were
measured using linearly polarized monochromatic X-ray
pulseswith�E/E = 5 · 10−4 [19] tuned between 840 and
880 eV to cover the L2 and L3 absorption edges [20]. The

Figure 1. (a) Near-infrared pump, soft x-ray absorption probe
experiment at the Ni L3 absorption 2p3/2 → 3d4s analyzing the
transiently modified electronic density of states above EF at time
delay �t. (b) Ground state (blue squares) and pumped (cir-
cles) absorption spectrum at �t = 0.4 ps. The pump-induced
changes �XAS are modeled (green line) based on the static
absorption spectrum which allows to distinguish the contribu-
tions of anenergy shift andbroadening. (c) Pump-induced change
(black squares) including the modeling result in (b) (green line).
The dashed (dotted) line indicates fits to the measured �XAS
with only an energy shift (broadening), which are insufficient to
describe the data.

employed X-ray delivery time pattern consisted of fifty
50 fs X-ray pulses in one train with a train repetition
rate of 10Hz and an intra-train repetition rate of 70 kHz.
The pump pulses [16,21] were synchronized with every
second X-ray pulse. A transmission zone plate [22,23]
splits the incoming X-rays into three focused, spatially
distinct beams of equal intensity in diffraction orders−1,
0, 1. This setup allowed the simultaneous detection of the
pumped, unpumped, and a reference signal for the identi-
cal X-ray pulse, which is essential at a SASE-free electron
laser due to fluctuations in the intensities of subsequent
pulses andwasmade possible by aMiniSDD-basedDSSC
detector, a 1Mpixel camera with a peak frame rate up
to 4.5MHz [24]. The time resolution of the experiment
was 80 fs full width at half maximum (FWHM). XAS was
recorded at room temperature in transmission geometry
and evaluated using a dedicated toolbox [16,25–28]. The
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pump-induced change is calculated as the negative log-
arithm of the pumped signal divided by the unpumped
one in combination with flat-field and non-linearity cor-
rections [28]. The spectra are corrected with a linear
background and are normalized according to the edge
jump [18].

Figure 1(b) depicts the ground state (unpumped) and
pumped fcc Ni L3 edge spectra at �t = 0.4 ps, Figure
1(c) the pump-induced change of the absorption spec-
trum. A positive change is observed at the rising edge
around 852.0–852.8 eV, followed by a smaller negative
change at 853–854 eV. To model these changes, we need
to account for both a spectral redshift and a broadening
bymodifying the unpumped spectrum, respectively, with
a rigid redshift and a broadening via convolution, fitted
to the measured �XAS [18]. We quantify the redshift
to 104 ± 25meV and the broadening to 139 ± 10meV,
which we assign in the following to changes in the elec-
tronic structure respectively electron redistribution. The
latter can be intuitively understood from the excitation
of holes (electrons) below (above) EF by the pump pulse
[29], see Figure 1(a).

Figure 2(a) details the spectral dependence of the
pump-induced change for 0.4 ps≤ �t ≤3.5 ps at both
absorption edges. We find that the positive change at
lower photon energy recedes to about half within 3.5 ps
while keeping its overall shape. The L2 edge gener-
ally exhibits a smaller and energetically broader change,
which we explain by the larger lifetime broadening at the
L2 compared to the L3 edge [18].

We now look at the time dependence in more detail
by scanning �t. Figure 2(b) shows the evolution of
the absorption change at a constant hν = 852.72 eV,
confirming the change at fixed hν reported in Figure
2(a). These time-dependent data highlight that the large
change occurs within 200 fs after pumping, while the
excess energy residesmostly in the electronic system. The
experimental data were fitted with exponential rise and
decay times τ1,2, respectively, convoluted with a Gaussian
of 80 fs FWHM to account for the time resolution [18].
We find τ1 = 130 ± 26 fs and τ2 = 233 ± 11 fs, whichwe
assign to electron thermalization and electron-phonon
coupling in good agreement with previous work [30,31].

For a theoretical analysis of the optically induced
non-equilibrium state we employ TDDFT, which extends
the ground state DFT to the time domain through
the exact one-to-one correspondence between the time-
dependent external potential and the density [32]. The
time-dependent Hamiltonian of an interacting system is
mapped onto an equivalent non-interacting one known
as the time-dependent Kohn-Sham (TDKS)Hamiltonian
with an effective Kohn-Sham (KS) external potential that
produces the same density of the interacting system [18].

Figure 2. (a) Pump-induced changes�XAS at the indicated time
delays from the experiment (markers) and TDDFT, respectively,
DFT calculations (solid lines). For comparison, TDDFT calculations
without local correlations (dashed line) andDFT calculationswith-
out (dotted line) a reduced magnetization (see text for details),
are shown. Traces are vertically offset for easier viewing. (b) Time-
dependent�XAS at hν = 852.72 eVwith a fit (green line) and the
corresponding values from TDDFT (convoluted with a Gaussian of
80 fs FWHM) and DFT, as indicated.

This allows to simulate the dynamics of matter subject
to a time-dependent perturbation, e.g. the effect of an
optical pulse on the electronic structure [33,34]. A gen-
eral approach for calculating time-dependent XAS using
a mixed scheme between the linear response of TDDFT
and the time evolution of the TDKS is outlined in Ref.
[35] and the static response function χ0 of the KS quasi-
particles is given by

χ0(ω) = lim
η→0

∑

ijk

(fik − fjk)
φ∗
ik(r)φ

∗
jk(r

′)φik(r′)φjk(r)

ω − (εi − εj) + iη
.

(1)
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Here fik is the occupation of the KS state, φ is the single
particle KS state, i,j are band indices, k is the electron’s
crystal momentum, η is proportional to lifetime broad-
ening, and εi is the KS energy [36]. This approach has
previously been used to provide a qualitative descrip-
tion of time-resolved x-ray magnetic circular dichroism
spectra using only the transient KS populations [35,37].
Here, we use the full transient quantities in Equation (1),
namely occupations, energies, and KS orbitals projected
on the ground state, following [38]. We introduce the
electronic correlations to our system from the single-
band Hubbard model and consider a Hamiltonian of the
form

Ĥ = Ĥ0(t) + U
∑

i
ni↑(t)ni↓(t), (2)

where Ĥ0 is the quasiparticle Hamiltonian assumed to
be equivalent to the KS Hamiltonian in the Local Spin
Density Approximation (LSDA),U is the onsite Hubbard
correlation, and n↑,↓ are the number operators of spin up
and spin down electrons for site i, respectively. The mag-
netic response function corresponding to Ĥ inmean field
(in the Random Phase Approximation) solution is

χH
0 (ω) = lim

η→0

∑

ijk

(fik − fjk)
φ∗
ik(r)φ

∗
jk(r

′)φik(r′)φjk(r)

ω − (εi − εj + U · m) + iη
,

(3)
where m = 〈n↑〉 − 〈n↓〉 is the average magnetization.
Equation (3) implies that those optical excitations of an
initial ground state (εi − εj) that are accompanied by spin
flips experience a shift of U · m [38].

Before electron thermalization through electron-
electron scattering on few 100 fs timescales [29,39], the
transient change in the populated DOS is considered
as the product of a time- and energy-dependent non-
equilibrium distribution function f (E, t) and an equally
time- and energy-dependent DOS(E, t). Figure 3(a)
shows the calculated f · DOS for fcc Ni before the opti-
cal excitation (unpumped) and after pumping with the
experimental pulse parameters at �t = 74 fs, the longest
computationally possible propagation time. Upon excita-
tion we find an increase in 3d↓ orbitals within an interval
of±0.2 eV around EF. This behavior is explained by spin-
orbit coupling mediated spin currents in the optically
excited electron system that induce spin-flip transitions
from the majority to the minority channel and lead to
a reduced value of m [9,10]. At 100 fs m is reduced by
≈15% from the equilibrium value of 0.61μB. The tran-
sient populations and energies are used as input for calcu-
lations of absorption spectra at theNiL2,3 edges following
Equation (1) and the results are depicted in Figure 3(b),
left. The excited electron distribution leads to a reduc-
tion of the absorption peak’s height, which captures part

of the experimental XAS in Figure 1(b). The calculated
absorption spectra using the time evolution of the TDKS
equation within the adiabatic LSDA, presented in Figure
3(b) on the left, are thus well in line with the calculated
f · DOS in Figure 3(a), but they lack the spectral shift
observed in the experiment, see Figure 1(b). While this
approximation successfully captures the changes in the
occupations fik − fjk, it is deficient in reproducing the
changes in the excitation energies, signaling the influence
of electron correlations. To account for these we adopt
Equation (2), using U =3 eV for the on-site correlation
[40]. The correlations modify the excitation energies of
the non-interacting KS response function of Equation (1)
by the U · m term, see Equation (3). Calculations of the
absorption spectrum including U are depicted in Figure
3(b) at right and now indeed show the transient redshift.
Since the reduced m is already obtained in the calcula-
tions without U, the ultrafast redshift is assigned to the
cooperation of U and m, leading to changes in the DOS.
We stress that such modifications of the electronic struc-
ture are essential to describe the experimental data, aswill
be shown in the following.

In the top part of Figure 2(a), we compare �XAS
calculated by TDDFT at �t = 0.1 ps [18] with the ear-
liest full spectrum available at �t = 0.4 ps quantita-
tively and obtain a very good agreement between exper-
iment and theory. For comparison, we calculate the
spectral changes for U =0 and find them to be qual-
itatively different, see Figure 2(a), and thus unable to
describe the experimental observation. In Figure 2(b),
the calculated changes from TDDFT and DFT are shown
on top of the time-dependent measurement at fixed
hν. TDDFT covers �t < 100 fs of the initial absorp-
tion increase, reinforcing that the initial non-equilibrium
state involves correlation-induced modifications of the
electronic structure. In contrast, the spectral shift caus-
ing the transient absorption increase at this energy is
entirely absent for U =0, see Figure 3(b). The influ-
ence of electron correlations on Ni spin dynamics
was also theoretically predicted in [41], justifying our
approach.

Previous work [37,42] used transient electronic occu-
pations of ground state wavefunctions to calculate the
response function. However, this implies a mere redis-
tribution of occupation weights on a rigid ground state
band structure. In similar state blocking calculations [43]
some transient features emerge below and above the X-
ray absorption edge, but they miss the experimentally
observed spectral shift of the entire edge. We instead
use the full transient quantities, i.e. we expand the wave-
functions in occupations and energies of instantaneous
eigenstates to the transient Hamiltonian to calculate the
response function, allowing us to follow the real-time
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Figure 3. (a) Calculated populated exchange-split density of
states for KS states in fcc Ni: f · DOS for majority (↑) and minority
(↓) states before optical excitation (solid lines) and at the longest
TDDFTpropagation time�t = 74 fs (dashed lines). The staticDOS
without population is shown for comparison (dotted lines). (b)
Absorption spectrum of the Ni L3 edge after optical excitation cal-
culated by TDDFT using the transient f · DOS from panel (a) at left
and including U= 3 eV following Equations (2), (3) in addition to
f · DOS at right.

dynamics of the response function in agreement with our
high-resolution time-resolved XAS experiment.

At times too long for TDDFT to be carried out accu-
rately, we approximate the excited state by an elevated
electron temperature Te and a reduced m [8] in quasi-
static constrained DFT calculations. In Figure 2(a), the
measured �XAS is compared with these DFT results
for �t ≥ 0.5 ps. We find very good agreement for Te
relaxing from 570K to 340K, combined with reduced
magnetic moments per atom of μ = 0.47μB to 0.56 μB,
for 0.5 ps < �t < 3.5 ps. Taking only an increased Te
into account and keeping m constant is insufficient to
obtain the observed �XAS, which highlights the sen-
sitivity of this technique to the changed m even using

linearly polarized x-rays. We note that earlier work using
DFT [43] obtained a spectral redshift for extreme Te of
7000Kwithout considering eitherU or the transient spin
currents, which determine the ultrafast demagnetization.
For more realistic Te used here, such an approach can
only capture the spectral changes partially. Agreement
with our DFT calculations is also found in Figure 2(b)
after electron thermalization at �t > 400 fs and for the
subsequent cooling of Te and simultaneous relaxation of
the optically induced demagnetization.

Based on the good agreement of both theory sets
with experiment, within their complementary time inter-
vals, we assign the transient spectral broadening to elec-
tronic redistribution described by f (E, t). The experi-
mentally observed spectral broadening of 130 ± 10meV
indeed agrees reasonably well with Te = 570K at 0.5 ps
(i.e. �Te = 270K above room temperature) consider-
ing that 4 · kB�Te = 93meV. Deviations between exper-
iment and theory in the negative change of�XAS, which
get more pronounced with �t (compare Figure 2(a)),
are potentially due to effects not covered in theory, e.g.
(non-thermal) phonon transport into the substratewhich
occurs on these few-ps timescales [44,45].

In conclusion, we present experimental tr-XAS for fcc
Ni in the non-equilibrium regime after fs laser excita-
tion in combination with ab initio theory, which allows
to identify the optically induced electron repopulation
and demagnetization. Our combined time and energy
resolution further explains the transient redshift of the
absorption spectrum as a signature of electron correla-
tions, as signaled by the Hubbard U and its influence on
the electronic response function. This successful demon-
stration of our theory on amean field, Hartree-Fock level
potentially offers a more general understanding of the
influence of local correlations on non-equilibrium charge
carrier dynamics not only in similar systems, e.g. Fe and
Co [2], but also strongly correlated materials with emer-
gent phases [46]. We note that the theoretical analysis
presented here does not rely on a renormalized screen-
ing of the Hubbard U and is in this sense consistent with
recent work on NiO [47]. Our approach of combining
state-of-the art time and energy resolution in soft x-ray
absorption spectroscopy with ab initio theory thus paves
the way for full access to the non-equilibrium electronic
structure and many-body effects of the broad class of
solid materials that exhibit local correlations and mag-
netic order.
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