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Abstract
The purpose of this work is to compare the two different procedures to calculate the L2,3 x-ray
absorption spectra of transition-metal compounds: (1) the semi-empirical charge transfer
multiplet (CTM) approach and (2) the ab initio configuration-interaction (CI) method based on
molecular orbitals. We mainly focused on the difference in the treatment of ligand field effects
and the charge transfer effects in the two methods. The reduction of multiplet interactions due
to the solid state effects has been found by the ab initio CI approach. We have also found that
the mixing between the original and the charge transferred configurations obtained by the
ab initio CI approach is smaller than that obtained by the CTM approach, since charge transfer
through the covalent bonding between metal and ligand atoms has been included by taking the
molecular orbitals as the basis functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The L2,3 x-ray absorption spectra relate to the transition of
a 2p core state to an empty state. At the edge, the spectra
are dominated by the 2p3d transitions. This paper discusses
two routes to calculate the L2,3 x-ray absorption near-edge
structures for 3d transition-metal compounds.

(a) The charge transfer multiplet (CTM) approach.
(b) The ab initio configuration-interaction (ab initio CI)

approach based on molecular orbitals.

The foremost motivation for writing this paper is the
comparison of the semi-empirical CTM approach and the route
towards a more ab initio approach, which is an important
motive for the development of the ab initio CI method. We first
introduce the CTM approach in section 2. Sections 3 and 4
then compare the ab initio CI approach. Section 5 compares

both multiplet models to other procedures to simulate the L2,3

x-ray absorption spectra.

2. The charge transfer multiplet approach

Below, we discuss the main aspects of the charge transfer
multiplet (CTM) approach. A more detailed discussion is given
in the recent book on the core level spectroscopy of solids [1].

2.1. Atomic multiplet effects

The metal 2p core electrons are excited with the dipole
transition into the 3d and 4s valence states. The transition
matrix elements to the 4s states are negligible and one mainly
observes the 2p3d transitions. Because of the strong 2p3d
wavefunction overlap, or more precisely the intra-atomic 2p3d
two-electron integrals, the x-ray absorption spectrum (XAS) is

0953-8984/09/104208+17$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/10/104208
mailto:ikeno@t02.mbox.media.kyoto-u.ac.jp
http://stacks.iop.org/JPhysCM/21/104208


J. Phys.: Condens. Matter 21 (2009) 104208 H Ikeno et al

strongly modified from the empty 3d density of states: this is
the multiplet effect [2, 3].

In the final state of the 2p XAS process, a partly filled
2p5 core state interacts with a partly filled 3d band. For
example, the Ni2+ ions in NiO can be approximated as a 3d9

configuration. The 2p hole and the 3d electron have radial
wavefunctions that overlap significantly. This wavefunction
overlap is an atomic effect that can be very large. It creates
final states that are found after the vector coupling of the 2p
and 3d wavefunctions. This effect is well known in atomic
physics and actually plays a crucial role in the calculation of
atomic spectra [4]. Experimentally it was shown that, while the
direct core hole potential is largely screened, these so-called
multiplet effects are hardly screened in the solid state. This
implies that the atomic multiplet effects are of the same order
of magnitude in atoms and in solids. In the charge transfer
multiplet approach one usually assumes that the solid state has
the same Slater integral values as the free atom. Because the
Slater integrals are usually calculated with the Hartree–Fock
approach within the RCN code of Cowan, these HF values are
reduced by 20% to take into account configuration-interaction
(CI) effects. These 80% of HF values describe the atomic
spectra well [4].

Atomic multiplet effects have been described in detail
elsewhere [1, 5]. Here we briefly introduce some concepts.
The number of peaks in an L-edge atomic multiplet spectrum
is limited and also the calculation is very small in size. As has
been shown in detail in the core level spectroscopy of solids,
the calculation of 3d0 systems (3d0 → 2p53d1) implies a single
initial state and a 3 × 3 matrix for the J = 1 final states.
The largest matrix for a 3dn ground state is found for n = 5
with 10C5 is 252 states, where this matrix can be separated
into different J values with the largest matrix for the J = 5/2
state with 10 states. The largest final state matrix has six times
252, or 1512 states. For the 3d5 → 2p53d6 transition, the
ground state has J = 5/2 and the three allowed final states
(with a selection rule �J = 0,±1) have respectively 35, 39
and 36 states for J = 3/2, 5/2 and 7/2. The largest final
state diagonalization is for a 39 × 39 matrix and the largest
calculation for the transition matrix element is 10 × 39. These
are very small matrices for present-day computer power and
hence these calculations only take a fraction of a second.

2.2. Crystal field effects

The crystal field model approximates the transition metal as
an isolated atom surrounded by a distribution of charges that
should mimic the actual solid. It turned out that such a
crystal field model could explain a large range of experiments,
including optical spectra, electron paramagnetic resonance
(EPR) spectra and x-ray absorption spectra. An important
reason for the success of the crystal field model is that
the explained properties are mainly determined by symmetry
considerations. The crystal field model makes use of group
theory, and in group theory terminology the only thing crystal
field theory does is to transfer the spectra obtained in atomic
symmetry to cubic symmetry and subsequently to any other
point group. Details of the crystal field multiplet approach for
L-edge spectra are given elsewhere [2, 3, 5].

Here we extend the discussion on the matrix sizes that play
a role in crystal field theory. The 3d0 → 2p53d1 transition was
a 1 × 3 calculation, where the largest matrix was the 3 × 3
final state. In cubic symmetry, this calculation transfers to
a 1 × 7 transition calculation, due to the admixture of more
symmetry states via the crystal field Hamiltonian. The largest
3d5 → 2p53d6 transition was a 10 × 39 calculation. In cubic
symmetry, this calculation transfers to a number of transitions
for the different symmetries in cubic symmetry, the largest of
which is a 42 × 210 transition calculation. These numbers
remain small and all crystal field multiplet calculations run in
only a few seconds.

2.3. Charge transfer effects

Charge transfer effects are the effects of charge fluctuations
in the initial and the final states, which can be described
by the combination of different ground state and final state
configurations. In the case of transition-metal oxides, the
most important charge transfer channel is the transition of a
3dN configuration to a 3dN+1 L configuration, where a ligand
electron is transferred to the metal site and a ligand hole L
is created. In principle, this is a combination of a 3dN+1

site and a ligand hole site at infinite distance. This charge
transfer channel is one of the two main channels discussed in
the Zaanen–Sawatzky–Allen model of the electronic structure
of transition-metal systems [6]. The other important channel is
the metal–metal charge transfer, where a 3dN 3dN configuration
is modified into a 3dN+13dN−1 configuration. To include such
a channel explicitly, at least two metal ions must be included
in the calculation, which is not the case in the charge transfer
multiplet (CTM) model.

The main reason that L edges (in contrast to 2p x-ray
photoemission) can be described well without the including of
charge transfer is that the creation of a 2p core hole transfers
the extra electron to the 3d band, which is essentially a charge
conserving optical transition. This implies that the ordering of
states remains similar to the ground state, where it is noticed
that each 3dN configuration consists of the full crystal field
multiplet manifold.

In the CTM model, the ligand hole state is described
as a delocalized d wavefunction that is described without
correlation effects within itself and without correlation effects
with other states. This approach mimics the description of
the actual p orbitals of the ligand states and the delocalized
d wavefunction can be envisaged as a combined wavefunction
of the ligand states. Because the delocalized d wavefunction
has one hole, its dimension is 10. The largest calculation for
two configurations is the 3d4 + 3d5L → 2p53d5 + 2p53d6 L
calculation that in C4 symmetry includes matrix sizes up to
3150. Because of the use of approximated diagonalization
routines, the calculation time is approximately 10 min on a
regular PC or laptop.

In addition to the addition of a 3dN+1 L configuration
to a 3dN ground state, the CTM program has the option
to include more configurations, for example adding the next
charge transfer state 3dN+2 L2, adding the metal–ligand charge
transfer 3dN−1 L, adding two different charge transfer channels
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Figure 1. The layout of the CTM4XAS graphical user interface for the charge transfer multiplet programs.

3dN+1 La and 3dN+1 Lb, where La and Lb are related to
two different ligand bands at different excitation energies and
coupling strengths [7].

Description of systems with strong π -bonds. In systems
that contain significant ligand metal charge transfer (LMCT)
as well as metal ligand charge transfer (MLCT), this has to
be included explicitly. This implies the inclusion of three
configurations 3dN + 3dN+1 L + 3dN−1 L. The 3dN+1 L
configuration takes care of the ligand metal charge transfer
and 3dN−1 L relates to metal ligand charge transfer effects,
including π -back bonding. This method turned out to
describe well systems with strong π -bonds, for example iron
cyanides [8] and iron-heme systems [9]. An interesting
approach to correlate CTM analysis with ab initio density
functional theory (DFT) calculations was developed by

Wasinger et al [10]. They performed detailed spectral fits of
a series of iron complexes, using the charge transfer multiplet
approach. In addition, they performed DFT calculations of
the ground states, using the ADF code. They analyzed the
distribution of the 3d band into metal 3d character and oxygen
character and compared the DFT results to a analysis of the
ground states as used in the optimized charge transfer multiplet
simulations. An excellent correlation between DFT and CTM
was found for the electron distribution over the 3d orbitals.

2.4. Calculations with the CTM4XAS graphical user interface

The charge transfer multiplet calculations as described above
have recently been included in the CTM4XAS user interface.
Figure 1 shows the layout of the interface. The input is
divided into four panels, respectively the atomic parameters
(top), the crystal field parameters (left, middle), the charge
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transfer parameters (right, middle) and the plotting options
(bottom). As yet, CTM4XAS provides the 2p and 3p XAS
spectra plus their XMCD spectra. The program is freely
available from the authors. Future versions of CTM4XAS will
include the calculation of x-ray photoemission (XPS), resonant
photoemission and Auger spectra plus x-ray emission and
resonant x-ray emission spectra.

2.5. Parameters as used in the CTM4XAS simulations

The CTM4XAS simulations use a number of semi-empirical
parameters. For a transition-metal ion in octahedral symmetry,
the crystal field multiplet calculation uses an empirical value
of the crystal field splitting 10 Dq . This can be derived from
other experiments, for example optical absorption or EPR.
Alternatively, it could be calculated, for example, from a DFT-
based calculation, similar to the DFT calculations that are used
for the ab initio CI calculations as discussed below.

The charge transfer multiplet calculations use a number
of additional parameters: the charge transfer energy �, the
Hubbard U3d3d and the core hole potential U2p3d. The charge
transfer energy and the Hubbard U can be derived from trends
in the 3d series or from additional experiments, in particular
XPS. The core hole potential U2p3d or Q is assumed to be 1–
2 eV larger than U . In addition, the hopping parameters T have
to be determined. They can be calculated from a tight-binding
fit to DFT calculations [1].

3. Ab initio multiplet approach

The charge transfer multiplet method is the most prevalent
and conventional theoretical approach for the analysis of TM-
L2,3 XANES. Although this approach has been successful in
reproducing many experimental spectra, it cannot be used to
predict multiplet structure a priori, because of the use of the
adjustable parameters. An ab initio calculation that takes
multiplet effects into account is therefore strongly desirable.

For this purpose, the Tanaka group in Kyoto has developed
a relativistic configuration-interaction program in quantum
chemistry. The molecular orbitals (MOs) obtained by
relativistic density functional theory (DFT) were used as basis
functions for the CI calculations. In this paper, we simply call
this method the ‘ab initio CI’ method. Experimental spectra
from many compounds having different d-electron numbers
and coordination numbers have been successfully reproduced
without empirical parameters [11–13]. In this section, the
theoretical background of the ab initio CI method is described
in detail.

3.1. Dirac equation and its non-relativistic limit

The wave equation for an electron, consistent with both the
principles of quantum mechanics and the theory of special
relativity, was formulated by Paul Dirac (see chapter XI
of [14]). The Dirac equation of a spin-1/2 particle in the
potential, v(r), which does not explicitly depend on time, is
given by

ĥDφ = εφ, (1)

ĥD = cα · p + mc2β + v(r). (2)

where c is the velocity of light, and α and β are 4 × 4
Dirac matrices acting on the one-electron wavefunction. The
Dirac matrices were obtained so that the square of the energy
of a free particle, E0 = cα · p + mc2, should satisfy
the relation among the energy, the momentum and the rest
mass in special relativity, E2

0 = c2|p|2 + m2c4. Since the
Dirac Hamiltonian holds 4 × 4 matrices, the eigenfunction
φ must be a four-component vector. Thus a fully relativistic
wavefunction contains the four degrees of freedom: two of
them are associated with the group of eigenstates with positive
and negative energy, and each group holds two degrees of
freedom corresponding to the probability amplitude for up-spin
and down-spin along with a specified direction. The positive
energy state, which is dominated by the first and the second
component, describes an electronic state, while the negative
energy state, dominated by the third and the fourth component,
describes a positronic state.

The most important relativistic effect for the TM-L2,3

XANES is the spin–orbit coupling. In the CTM approach,
the spin–orbit coupling is usually treated as the correction
term to the non-relativistic Schrödinger equation. The analytic
form of the spin–orbit coupling term can be derived from the
Dirac equation by eliminating the minor components (the third
and the fourth components) of the wavefunction from (1) and
considering the non-relativistic limit where c is much larger
compared with the velocity of electrons [15]. Thus, the spin–
orbit coupling and other relativistic effects are automatically
included by solving the Dirac equation.

3.2. Relativistic many-electron Hamiltonian

In order to calculate TM-L2,3 XANES for atoms, molecules
and solids, we have to consider the motion of the multiple
interacting electrons with the electrostatic potential from
the nuclei. Quantum electrodynamics (QED), which is the
relativistic quantum field theory, is the most accurate theory
in physics to describe the interactions of electrons [16]. QED
describes the motion of electrons and positrons (antiparticles
of electrons) interacting with each other by the exchange of
photons. In general, the Hamiltonian of QED only conserves
the total charge in the system, but not the number of particles,
since virtual photons can be transformed into virtual electron–
positron pairs. For the calculation of atoms, molecules
and solids, an approximated Hamiltonian which refers to N
electrons without any positrons and photons is commonly
used. This approach is known as the ‘no-pair’ approximation
[17–19]. The approximated ‘no-pair’ Hamiltonian is expressed
as

Ĥnp =
N∑

i=1

ĥ(ri) + 1
2

N∑

i=1, j �=i

�+ ĝ(ri , r j )�+. (3)

Here, the operator �+ is defined as the product �+(1)�+(2)

· · ·�+(N), with �+(i) the projection operator onto the space
spanned by the positive eigenstates (electronic states) of some
one-electron Hamiltonian. By using the projection operator
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�+, virtual electron–photon pairs are eliminated from the
Hamiltonian. h(ri ) is a one-particle Dirac operator given by

ĥ(ri) = cαi · pi + mc2βi + vnuc(ri ) + vext(ri ), (4)

where vnuc(ri ) is the electrostatic potential from nuclei and
vext(ri ) is an external static potential such as the Madelung
potential. ĝ(ri , r j ) is a two-electron operator which describes
inter-electron interactions. We have adopted the instantaneous
Coulomb interaction operator:

ĝ(ri , r j ) = 1

4πε0

e2

∣∣ri − r j

∣∣ (5)

as a non-relativistic case. In this case, the Hamiltonian (3) is
called the ‘no-pair’ Dirac–Coulomb Hamiltonian. Though the
relativistic effects on inter-electron interactions are neglected,
the ‘no-pair’ Dirac–Coulomb Hamiltonian is expected to
be a good approximation for the L2,3 XANES of 3d
TM compounds. The influences of relativistic correction
terms in QED for the Coulomb interactions were discussed
elsewhere [20].

3.3. Relativistic configuration-interaction method

Using the relativistic ‘no-pair’ formalism, almost all methods
in quantum chemistry formulate the non-relativistic many-
electron problem, such as the Hartree–Fock method, the
configuration-interaction method (CI), the coupled-cluster
method (CC), the multi-configuration self-consistent-field
method (MCSCF) and the many-body perturbation theory
(MBPT), can be extended for the relativistic problem in a
straightforward manner [21–28].

In this section, the CI method is explained in detail. The
CI method is a post-self-consistent field (SCF) method to solve
the non-relativistic (Schrödinger) equation or the relativistic
equation for many-electron systems. In quantum chemistry,
the CI method is mainly used to improve the ground state
wavefunction by including the electronic correlation effects.
The CI method is also useful for spectroscopy since it can
explicitly calculate many-electron eigenstates corresponding to
both ground and excited states and it is convenient to calculate
transition probabilities of spectra.

In order to obtain the approximate eigenfunctions and
eigenvalues of Ĥnp, one chooses a finite orthonormal basis
set of one-particle states at first. In practice, the electronic
eigenstates {φi |i = 1, 2, . . . , L} (N < L) of the one-particle
Dirac operator:

ĥ′(r) = ĥ(r) + Ueff(r), (6)

are used as a basis set, where Ueff(r) is an approximated
potential of inter-electron interactions. In most cases, the
Dirac–Hartree–Fock method, the relativistic version of the
Hartree–Fock method, is used to calculate {φi}. In the Dirac–
Hartree–Fock method, the electronic correlation effects are not
included in the equation: these effects are taken into account
through CI. The alternative choice is using the solutions of
the Dirac–Kohn–Sham equation, which is the one-particle
Dirac equation derived from the relativistic density functional

theory [29–31]. In the Dirac–Kohn–Sham equation, the
electron correlation effects are approximately included through
the exchange–correlation potential whose exact formalism
is not known. Therefore, the correction of the electronic
correlation effects are taken into account through CI based on
Dirac–Kohn–Sham orbitals.

Once one-electron states {φi | i = 1, 2, . . . , L} are
obtained, the ‘no-pair’ Hamiltonian can be expressed in the
second quantized form as

Ĥ =
L∑

i, j=1

〈i |ĥ| j〉a†
i a j + 1

2

L∑

i, j,k,l=1

〈i j |ĝ|kl〉a†
i a†

j alak, (7)

where 〈i |ĥ| j〉 and 〈i j |ĝ|kl〉 are, respectively, the one-electron
and the two-electron integrals defined as

〈i |ĥ| j〉 =
∫

φ∗
i (r)ĥ(r)φ j(r) dr, (8)

〈i j |ĝ|kl〉 =
∫∫

φ∗
i (r1)φ

∗
j (r2)ĝ(r1, r2)φk(r1)φl(r2) dr1 dr2.

(9)
ai and a†

i denote the creation and annihilation operator for an
electron in the one-electron state φi , respectively, which satisfy
the following anti-commutation relations:

{ai, a j } = {a†
i , a†

j } = 0,

{ai, a†
j } = δi j .

(10)

The N-electron wavefunctions can be expressed as a linear
combination of N-electron Slater determinants constructed
from L orthonormal one-electron functions {φi}:

|	k〉 =
∑

p

Cpk |
p〉. (11)

Here, |
p〉 = a†
p1

· · · a†
pN

|vac〉 are the Slater determinants
constructed from p1, . . . , pN th one-electron states, where
|vac〉 is the vacuum state, and the sum in (11) runs over
all possible N combinations from L indexes of one-electron
states. The coefficients Cpk in (11) for the ‘no-pair’ Dirac–
Coulomb Hamiltonian Ĥ can be determined by using the
standard Rayleigh–Ritz variational method. The Hamiltonian
matrix elements are evaluated as

〈
p|Ĥ |
q〉 =
L∑

i, j=1

〈i |ĥ| j〉〈
p|a†
i a j |
q〉

+ 1
2

L∑

i, j,k,l=1

〈i j |ĝ|kl〉〈
p|a†
i a†

j alak |
q〉. (12)

Then the coefficient Cpk is obtained by diagonalizing this
Hamiltonian matrix as the eigenvectors with the corresponding
eigenvalues.

In principle, we can determine the LCN number of
coefficients Cpk in (11). In quantum chemistry, this method is
called the ‘full-CI’, whose solutions give the best description
of many-electron states for a given finite basis set {φi |i =
1, 2, . . . , L}. However, the full-CI is only possible if
both the number of electrons N and the basis size L are
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small. Otherwise the number LCN of Slater determinants
and corresponding coefficients becomes too large to compute.
It is possible to significantly reduce this number by using
the symmetry of the system, but the remaining numbers
are still enormously large. Therefore the full-CI method is
only applicable to the very limited system, and in practice,
CI calculations are carried out with restricted electronic
configurations to reduce the number of variational parameters,
Cpk .

3.4. DFT–CI

Further reduction of computational costs is achieved by taking
the hybrid method of density functional theory (DFT) and
the CI method. In this approach, electronic correlations
among particularly important orbitals are taken into account
by the CI scheme, while correlations among other orbitals are
approximately treated within the framework of DFT [11, 32].
We call this method the ‘DFT–CI’ method. The effective ‘no-
pair’ Hamiltonian for selected M orbitals (M < L) can be
described as

Ĥeff =
M∑

i, j=1

〈i |ĥ + U ′
eff| j〉a†

i a j

+ 1
2

M∑

i, j,k,l=1

〈i j |ĝ|kl〉a†
i a†

j alak . (13)

Here U ′
eff(ri) denotes the approximated exchange correlation

potential from the electrons occupying the L − M orbitals
treated with DFT. The Hamiltonian matrix elements are
evaluated using (12), which sums only over the selected M
orbitals. Therefore we only need to calculate the one- and
two-electron integrals, (8) and (9), among selected M orbitals.
It helps to reduce the computational time, especially for the
evaluation of the two-electron integrals, as the number of
two-electron integrals is of the order of O(M4). However,
the quality of eigenstates obtained depends on the exchange–
correlation potentials used in the calculations. Such potential
dependence can be reduced by taking an increasing number of
selected orbitals M .

3.5. Photo-absorption cross section

X-ray absorption spectroscopy measures the x-ray absorption
coefficient, μ, depending on the photon energy E = h̄ω. μ

is proportional to the photo-absorption cross section (PACS),
σabs, of a single atom. According to ‘Fermi’s Golden Rule’,
σabs(E) of an N-electron atom for x-rays polarized in the ε

direction and with the wavenumber k is given by

σabs(E) =
∑

f

4π2h̄2α

m2 E

∣∣∣∣∣

〈
	f

∣∣∣∣∣

N∑

j=1

eik·r j (ε · pj)

∣∣∣∣∣ 	i

〉∣∣∣∣∣

2

× δ(Ef − Ei − E), (14)

where |	i〉 and |	f〉 are the wavefunctions at the final state
and initial state, respectively. Ei and Ef are many-electron
energies of the corresponding states. α = e2/h̄c ≈ 1/137
is the fine structure constant. In x-ray absorption spectroscopy,
the wavelength of incident x-rays is much larger than the radius

of the core wavefunction, i.e. k · r 	 1 and eik·r ≈ 1. Thus
σabs can be evaluated to a good approximation as

σabs(E) ≈
∑

f

4π2α (Ef − Ei)

∣∣∣∣∣

〈
	f

∣∣∣∣∣

N∑

j=1

ε · rj

∣∣∣∣∣ 	i

〉∣∣∣∣∣

2

× δ(Ef − Ei − E) (15)

which corresponds to an electric dipole transition. The
commutation relations, [Ĥ , r j ] = −i(h̄/m)p j , are used to
obtain (15). In the case of 3d TM-L2,3 XANES, the quadrupole
transitions or the higher-order transitions are some hundred
times weaker than the dipole transitions and can be neglected.

In atomic physics, the oscillator strength of the electric
dipole transition is defined as

Iif = 2m

h̄2 (Ef − Ei)

∣∣∣∣∣

〈
	f

∣∣∣∣∣

N∑

k=1

ε · rk

∣∣∣∣∣ 	i

〉∣∣∣∣∣

2

. (16)

Using (11), the bra–ket in (16) is evaluated by
〈
	f

∣∣∣∣∣

N∑

k=1

ε · rk

∣∣∣∣∣ 	i

〉

=
∑

p,q

C∗
fpCiq

M∑

k,l=1

(ε · 〈k|r|l〉)〈
p|a†
k al |
q〉, (17)

where 〈k|r|l〉 denotes the dipole transition matrix element
between one-electron states given by

〈k|r|l〉 =
∫

φ∗
k (r)rφl(r) dr. (18)

Assigning (16) to (15) and replacing the Dirac δ function
in (15) by the Lorentz function, σabs is expressed as

σabs(E) =
∑

f

2π2h̄2α Iif

m

1

2π

�

[E − (Ef − Ei)]2 + �2/4
.

(19)
The full width at half-maximum (FWHM) of the Lorentz
function, �, in (19) corresponds to the broadening factor
of peaks in the XANES spectrum. In general, each peak
in an experimental TM-L2,3 XANES spectrum has its own
characteristic broadening [2]. � is determined by a variety of
phenomena such as the core–hole lifetime, the Coster–Kronig
Auger decay and the solid state (dispersion and vibration)
effects, which are currently too complicated to estimate non-
empirically. In general, the L2-edge is broader than the L3-
edge due to the super-Coster–Kronig decay, where the L2 hole
decays to the L3 hole. However, we use a constant value of
� at all energy ranges to calculate the theoretical spectra for
simplicity.

In the current procedure, the absolute transition energy,
Ef − Ei, is overestimated by nearly 1%. This may come
from the underestimation of electronic correlation due to the
restriction of electronic configurations and the insufficient
treatment of core–hole screening effects. In the present work,
the absolute transition energy was corrected by taking the
orbital energy difference between single-electron orbitals for
Slater’s transition state as a reference [11].
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Figure 2. One-electron MO energy of TMO6 clusters for SrTiO3,
MnO, CoO and NiO.

4. Ab initio multiplet calculations for TM-L2,3
XANES

4.1. Molecular orbitals

As the first step of an ab initio CI calculation, a relativistic MO
calculation is carried out using a model cluster composed of a
TM ion and neighboring ligand ions within the local density
approximation (LDA). The cluster is embedded into a mesh
of point charges with formal valences, placed at the external
atomic sites, so as to take into account the effective Madelung
potential. Thus, the spatial distributions and the energy levels
of MOs depend on the covalency between the TM ion and
ligands, and the crystalline structure. Both crystal field effects
and covalency between a TM ion and neighboring ligands can
be included by using MOs. Therefore, this method can be
applied to TM compounds with arbitrary atomic arrangement
and symmetry.

Figure 2 shows the one-electron MO energies for SrTiO3,
MnO, CoO and NiO calculated by the RSCAT code [33].
In those calculations, TMO6 clusters with octahedral (Oh)
symmetry were used. In figure 2, the highest state of the φO 2p

orbitals is set as the energy origin, where φO 2p denotes the
molecular orbitals mainly composed of O 2p atomic orbitals.
In those four compounds, the TM-3d levels split into two
levels, namely t2g and eg, because of the ligand field. Strictly
speaking, t2g further splits because of the spin–orbit coupling
at TM-3d levels. The expressions t2g and eg are not rigorously
right within the relativistic theory. Instead, the representations
of the double group, such as γ7g and γ8g, should be employed.
However, the relativistic effects on TM-3d levels are small and
the familiar expressions, t2g and eg, are used for simplicity. We
define the ligand field splitting, 10 Dq , as the averaged energy
difference between t2g and eg levels. 10 Dq as well as the
spin–orbit splitting at core 2p levels, ξ2p, are important factors

Table 1. Spin–orbit splitting on core 2p levels, ξ2p, averaged energy
difference between t2g and eg levels, i.e. 10 Dq, Mulliken’s O 2p
atomic orbital populations of t2g, QO 2p(t2g), and eg, QO 2p(eg), and
the difference between the Madelung potential for t2g and eg levels,
�EMP obtained by the relativistic MO calculations.

Compounds
ξ2p

(eV)
10 Dq
(eV)

�EMP

(eV) QO 2p(t2g) QO 2p(eg)

SrTiO3 5.78 2.24 −0.26 0.083 0.126
MnO 10.44 1.10 0.20 0.022 0.083
CoO 14.84 1.14 0.27 0.027 0.111
NiO 17.50 1.19 0.35 0.033 0.143

to determine the multiplet structure and spectral shapes of TM-
L2,3 XANES. The values of ξ2p and 10 Dq are summarized in
table 1. In general, ξ2p is the same when the atomic number
of the TM ion is the same, and increases with the increase in
atomic number. In contrast, 10 Dq depends on the chemical
state of TM ions, covalency between TM ions and ligands,
and the Madelung potential. The contribution of the Madelung
potential on 10 Dq , i.e. �EMP, can be calculated as

�EMP = 〈eg|vext|eg〉 − 〈t2g|vext|t2g〉. (20)

The evaluated values of �EMP are also listed in table 1. One
can see that �EMP contributes a few tens of percentage points
of 10 Dq . The result indicates that ignoring the Madelung
potential can cause large errors in the ligand field splitting,
and thus the multiplet structure in TM-L2,3 XANES [34]. The
dependences of the Madelung potential on the crystal structure
and their contribution to the Co L2,3 XANES were discussed
in detail by Kumagai et al [35]. The relative energies of the
φ3d levels with respect to the φO 2p levels are also important for
the TM-L2,3 XANES, since charge transfer can occur when the
energy difference between these two levels is small. In general,
the energy difference between φ3d levels and φO 2p decreases as
the atomic number of TM increases. It also decreases when the
number of 3d electrons decreases because the system with the
smaller 3d electrons has less inter-electron repulsion. These
tendencies can be seen in figure 2.

4.2. Covalency and reduction of two-electron integrals

The multiplet levels are obtained by diagonalizing the many-
electron Hamiltonian matrix (12). Thus, the multiplet energies
depend on the one-electron integrals (8), which describe the
ligand field splitting and the hopping integrals among MOs,
and the two-electron integrals (9), which denote the inter-
electron interaction energies. In the ab initio CI calculation,
those integrals are directly evaluated over the MOs. Thus,
we can obtain the multiplet levels without any empirical
parameters. In order to make the initial and final states
orthogonal, both initial and final states were described using
the same MO set in the present calculations. In other words, the
values of one- and two-electron integrals were the same in both
initial and final states. The change of covalency in the final
states due to the existence of a core–hole was not considered.
The core–hole effects were taken into account only through
the CI. The effects of MO relaxation at the final states on the
multiplet states were discussed by Bagus and Ilton [36].
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The Coulomb repulsion between the TM-2p hole and the
TM-3d electrons (holes) of an isolated TM ion is reduced when
the TM ion forms bonds with the ligand ions in solids. In
the case of 3d TM oxides, there exist strong covalent bonding
between the TM-3d and the O 2p orbitals. In table 1, the
contribution of O 2p atomic orbitals to the t2g and the eg levels
evaluated by Mulliken’s population analysis method [37] is
also shown. In all oxides, the O 2p population (QO 2p) is much
greater in eg than in t2g. The magnitude of Coulomb repulsion
among electrons is determined by the two-electron integrals
〈i j |ĝ|kl〉, where ĝ is the Coulomb interaction operator. The
calculated two-electron integrals for four oxides, i.e. SrTiO3,
MnO, CoO and NiO, and for the isolated ions with the same
formal charges are listed in table 2. Although we obtained the
values of all two-electron integrals, only the averaged value of
Coulomb integrals:

Uave(P, Q) = 1

2K

∑

i, j∈P,Q

〈i j
∣∣ĝ

∣∣ i j〉, (21)

are shown for simplicity, where P and Q denote the set of
orbitals, i.e. 2p1/2, 2p3/2 or 3d for the isolated ions, and φ2p1/2,
φ2p3/2, t2g or eg for TM oxides. K is the number of integrals
summed. The values inside the parentheses of table 2 are
the ratios between the averaged Coulomb integrals of TMO6

clusters to those of isolated TM ions. The atomic value of Uave

can be decomposed as the sum of several Slater integrals, Fk :
F0 and F2 are included for Uave(2p, 2p) and Uave(2p, 3d), and
F0, F2 and F4 for Uave(3d, 3d). In the case of the solid state,
however, many more Slater integrals are required to describe
Uave because of the breaking of spherical symmetry. Therefore,
the Slater integrals are not explicitly calculated in the ab initio
CI method. Instead, the two-electron integrals over MOs,
〈i j |ĝ|kl〉, are directly evaluated by numerical integration.

From table 2, one can clearly see that Uave(φ2p, φ2p) in
TM oxides are almost the same as Uave(2p, 2p) in isolated
ions. This is because the core 2p levels are hardly affected by
the ligand field. In contrast, Uave(φ2p, φ3d) and Uave(φ3d, φ3d)

in TM oxides are significantly reduced from the atomic
values, Uave(2p, 3d) and Uave(3d, 3d). The reduction of 3d–3d
Coulomb interactions is larger than that of 2p–3d interactions.
The reduction of Coulomb integrals becomes larger when the
covalent bonding between TM-3d and O 2p orbitals is large.
For instance, Uave(eg, eg) is more reduced than Uave(t2g, t2g)

from the corresponding values of isolated ions. This is because,
when the mixing of TM-3d and O 2p orbitals is larger, the
effective spatial region where electrons can move is spread
wider, hence the Coulomb repulsion becomes smaller.

It should be noted that, in charge transfer multiplet
theory, the Slater integrals, which determine the inter-electron
interaction, are taken at their atomic values in most calculations
of TM compounds. If the Hartree–Fock method is used to
calculate them, the atomic values identify with a 20% reduction
of the Hartree–Fock values. The reductions in the two-electron
integrals due to covalency are neglected in CTM theory, or they
are, uniformly, empirically imposed.

Table 2. Averaged values of the Coulomb integrals
〈i j |1/r12|i j〉(i �= j) in eV among TM-2p1/2, 2p3/2 and 3d (t2g, eg)
orbitals for TMO6 clusters and isolated TM ions. The values inside
parentheses indicate the reduction factors of the Coulomb integrals
from the corresponding atomic values.

Uave Ti4+ SrTiO3 Mn2+ MnO

(2p1/2, 2p1/2) 86.34 86.29 (0.999) 101.39 101.33 (0.999)
(2p1/2, 2p3/2) 85.93 85.88 (0.999) 100.77 100.70 (0.999)
(2p3/2, 2p3/2) 84.99 84.95 (1.000) 99.54 99.47 (0.999)
(2p1/2, 3d) 29.62 31.64
(2p1/2, t2g) 26.38 (0.891) 30.45 (0.962)
(2p1/2, eg) 26.21 (0.885) 29.74 (0.940)
(2p3/2, 3d) 29.61 31.63
(2p3/2, t2g) 26.37 (0.891) 30.44 (0.962)
(2p3/2, eg) 26.20 (0.885) 29.73 (0.940)
(3d, 3d) 21.86 22.46
(t2g, t2g) 18.47 (0.845) 21.30 (0.948)
(t2g, eg) 17.96 (0.822) 20.44 (0.908)
(eg, eg) 17.83 (0.816) 20.03 (0.892)

Uave Co2+ CoO Ni2+ NiO

(2p1/2, 2p1/2) 111.47 111.40 (0.999) 116.54 116.45 (0.999)
(2p1/2, 2p3/2) 110.67 110.60 (0.999) 115.64 115.55 (0.999)
(2p3/2, 2p3/2) 109.21 109.14 (0.999) 114.05 113.97 (0.999)
(2p1/2, 3d) 35.50 37.43
(2p1/2, t2g) 34.24 (0.965) 36.09 (0.964)
(2p1/2, eg) 32.75 (0.923) 33.72 (0.901)
(2p3/2, 3d) 35.48 37.41
(2p3/2, t2g) 34.23 (0.964) 36.07 (0.964)
(2p3/2, eg) 32.74 (0.900) 33.70 (0.900)
(3d, 3d) 25.10 26.42
(t2g, t2g) 23.80 (0.948) 24.98 (0.945)
(t2g, eg) 22.44 (0.894) 23.06 (0.872)
(eg, eg) 21.58 (0.860) 21.75 (0.823)

4.3. Multiplet structures and transition probabilities

The multiplet structures corresponding to TM-L2,3 XANES for
SrTiO3, MnO and CoO have been calculated by the ab initio
CI method or, strictly speaking, the DFT–CI method. In
these calculations, TMO6 clusters embedded in the Madelung
potential were used. The one-electron and the two-electron
integrals among φ2p, φ3d and φO 2p were explicitly calculated,
while the interactions with the electrons occupying other
orbitals were treated as the effective potential with LDA. As
mentioned in section 3.3, the CI calculations were carried
out with restricted configurations. TM-L2,3 XANES can
be mainly ascribed to the transition from the (φ2p)

6(φ3d)
n

configuration to the (φ2p)
5(φ3d)

n+1 configuration. Thus, only
φ2p (2p1/2, 2p3/2) and φ3d (t2g, eg) MOs were taken as the active
space. In other words, only the configurations obtained by
changing the occupation in those 16 MOs were used to expand
many-electron wavefunctions. φO 2p orbitals (36 MOs) were
fully occupied in those Slater determinants. Moreover, the
configurations having two or more holes on φ2p orbitals were
not considered, because the many-electron energies of such
configurations are much higher and they do not significantly
interact with these two configurations described above.

In the case of Ti L2,3 XANES of SrTiO3, for instance,
the initial configuration is (φ2p1/2)

2(φ2p3/2)
4(t2g)

0(eg)
0, which

can provide only a single Slater determinant. On the other
hand, the final configuration (φ2p1/2)

2(φ2p3/2)
4(t2g)

1(eg)
0 can

8
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Table 3. Occupation numbers of each level of orbitals for the initial
and final configurations for the TM-L2,3 XANES for SrTiO3, MnO
and CoO, and the number of Slater determinants.

φ2p1/2 φ2p3/2 t2g eg NSD Total

SrTiO3 Initial 2 4 0 0 1 1

Final 2 3 1 0 24 60
2 3 0 1 16
1 4 1 0 12
1 4 0 1 8

MnO Initial 2 4 5 0 6 252
2 4 4 1 60
2 4 3 2 120
2 4 2 3 60
2 4 1 4 6

Final 2 3 6 0 4 1260
2 3 5 1 96
2 3 4 2 360
2 3 3 3 320
2 3 2 4 60
1 4 6 0 2
1 4 5 1 48
1 4 4 2 180
1 4 3 3 160
1 4 2 4 30

CoO Initial 2 4 6 1 4 120
2 4 5 2 36
2 4 4 3 60
2 4 3 4 20

Final 2 3 6 2 24 270
2 3 5 3 96
2 3 4 4 60
1 4 6 2 12
1 4 5 3 48
1 4 4 4 30

make 24(=4C3 × 6C1) Slater determinants. Including the other
three configurations, 60 Slater determinants can be made for
the final states. The electronic configurations corresponding to
the initial and final states of TM-L2,3 XANES for these three
oxides and the number of Slater determinants are summarized
in table 3.

The many-electron energies and the many-electron
wavefunctions were calculated by diagonalizing the many-
electron Hamiltonian (13). The bottom panels in figure 3
show the multiplet structures corresponding to the final states
of TM-L2,3 XANES of SrTiO3, MnO and CoO. The number
of final states for these three oxides are 60, 1260 and 270,
respectively. Though a Ti ion in SrTiO3 is in a d0 configuration
at the ground state, the final states of Ti L2,3 XANES shows
widespread multiplet structure because of the strong Coulomb
interactions between φ2p core–hole and the excited electron.
More complicated multiplet structures can be seen in the
case of MnO and CoO, because of the interactions among
the φ2p core–hole, the excited electron and the pre-existing
φ3d electrons. The oscillator strengths of the electric dipole
transitions and the PACS were evaluated using equations (16)
and (19), respectively. The FWHM of the Lorentz functions
were set to 0.6 eV over the whole energy region. The results
are shown in the middle panels in figure 3. They are compared
with the experimental spectra taken from the literature [38–40]

(upper panels). One can clearly see that only a part of the
multiplet states contribute to the TM-L2,3 spectra. This is
because of the selection rule of the electronic dipole transition.
The theoretical spectra of these three compounds show good
agreement with the experimental spectra. The peak positions
and the intensity ratios, and the small shoulder peaks, are well
reproduced.

4.4. Charge transfer effects in the ab initio CI method

The charge transfer (CT) from ligand ions to the TM ions plays
an important role in the spectral shapes of the TM-L2,3 XANES
of some 3d TM compounds. In the CTM approach, the charge
transfer effects are treated as the configuration interaction
among two (or more) atomic configurations as described in
section 2.3.

The ‘charge transfer’ effects in the CTM approach are
divided into two parts in the ab initio CI method based on
MOs. The first part is the charge transfer through the covalent
bonding between the TM-3d and ligand orbitals, which can
automatically be included using MOs instead of atomic orbitals
(AOs). The other part is the additional electronic excitation
from the MOs corresponding to the valence band to φ3d

orbitals. This contribution can be included by taking the
additional configurations (Slater determinants) in the CI. In this
section, we use the phrase, ‘charge transfer’, to indicate the
latter effect.

The charge transfer multiplet structures of TM-L2,3

XANES for SrTiO3 and NiO have been calculated using
TMO6 clusters with the DFT–CI method. Similar to LF
multiplet calculations, the one-electron and the two-electron
integrals among φ2p, φ3d and φO 2p were explicitly calculated,
while the interactions with the electrons occupying other
orbitals were treated as the effective potential with LDA.
The charge transferred configurations (φ3d)

n+1(φO 2p)
−1 and

(φ2p)
5(φ3d)

n+2(φO 2p)
−1 were added to describe the initial and

the final states, respectively, where (φO 2p)
−1 denotes a hole

in φO 2p orbitals. In those calculations, the 36(=6 × 6)

neighboring φO 2p orbitals were explicitly considered as ligand
orbitals. Thus, the charge-transferred configurations described
above were explicitly described as (φ2p)

6(φ3d)
n+1(φO 2p)

35

and (φ2p)
5(φ3d)

n+2(φO 2p)
35. The electronic configurations

considered in the calculations and the numbers of Slater
determinants were summarized in table 4. As can be seen,
the number of Slater determinants, and hence the dimension
of the Hamiltonian matrix, drastically increase by including
the CT. In the CTM model, the charge transfer energy, �,
and the hopping integrals between ligand state and 3d, T , are
introduced as additional empirical parameters to describe the
energy levels. � determines the relative energy of 3dn+1 L
to 3dn multiplet levels, while T controls the mixing between
3dn+1 L and 3dn configurations. The charge transfer energy at
the final state is changed by U3d3d − U2p3d, where U3d3d and
U2p3d denote the on-site Coulomb interaction between two 3d
electrons and that between a 2p core–hole and a 3d electron,
respectively. In the ab initio CI method, the contributions
of those parameters are automatically and rigorously included
in the Hamiltonian matrix. The energy difference between

9
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Figure 3. Multiplet levels (bottom) and theoretical spectra of TM-L2,3 XANES (middle) for SrTiO3, MnO and CoO compared with
experimental ones taken from the literature [38–40] (top). The gray bars drawn with theoretical spectra are the oscillator strengths of electric
dipole transitions.

(φ3d)
n and (φ3d)

n+1(φO 2p)
−1 configurations can be described

as the difference of the Hamiltonian matrix elements
〈
LF|Ĥ |
′

LF〉 and 〈
CT|Ĥ |
′
CT〉, where 
LF and 
CT

represent the Slater determinants belonging to the original
and the charge-transferred configurations, respectively. (φ3d)

n

and (φ3d)
n+1(φO 2p)

−1 configurations are mixed when the non-
diagonal block [〈
LF|Ĥ |
CT〉] has non-zero elements. Since
all one- and two-electron integrals are already evaluated,
the matrix elements, 〈
LF|Ĥ |
′

LF〉, 〈
CT|Ĥ |
′
CT〉 and

〈
LF|Ĥ |
CT〉, can be evaluated using (12) without any
empirical parameters. The values of those matrix elements are

different because of the difference of the coupling coefficients,
〈
p|a†

i a j |
q〉 and 〈
p|a†
i a†

j alak |
q〉, which depend on the
difference of the orbital occupation corresponding to the Slater
determinants 
p and 
q . The contribution of U3d3d −
U2p3d in the charge transfer energy at the final states is also
explicitly included in the Hamiltonian matrix for the final
configurations. Thus, the CT multiplet levels can be obtained
by just diagonalizing the enlarged Hamiltonian matrix.

It should be noted that the number of ligand orbitals
depends on the ligand atoms and the coordination number in
the ab initio CI method. For instance, we only use 24(=6 ×
4)φO 2p orbitals in the case of a TMO4 cluster. In addition,
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Table 4. Occupation numbers of each level of orbitals for the initial
and final configurations for the TM-L2,3 XANES of NiO and SrTiO3

including the charge transfer.

φ2p1/2 φ2p3/2 t2g eg NSD Total

SrTiO3 Initial 2 4 36 0 0 1

Initial 2 4 35 1 0 216 361
(CT) 2 4 35 0 1 144

Final 2 3 36 1 0 24
2 3 36 0 1 16
1 4 36 1 0 12
1 4 36 0 1 8

NiO Final 2 3 35 2 0 2160 9780
(CT) 2 3 35 1 1 3456

2 3 35 0 2 864
1 4 35 2 0 1080
1 4 35 1 1 1728
1 4 35 0 2 432

Initial 2 4 36 6 2 6 405
2 4 36 5 3 24
2 4 36 4 4 15

Initial 2 4 35 6 3 144
(CT) 2 4 35 5 4 216

Final 2 3 36 6 3 16 276
2 3 36 5 4 24
1 4 36 6 3 8
1 4 36 5 4 12

Final 2 3 35 6 4 144
(CT) 1 4 35 6 4 72

each ligand orbital has different excitation energy and coupling
strength. In other words, multiple charge transfer channels are
taken into account in the ab initio CI method. They are the
big differences between the ab initio CI method and the CTM
model. In the CTM model, a ligand hole is described as a
delocalized 3d wavefunction (see section 2.3), and the same
excitation energy and coupling strength are used in most cases.

It should also be noted that, in principle, two or more
ligand metal CT channels or metal ligand CT can be included
by taking the corresponding electronic configurations in the
ab initio CI method. The metal–metal CT can be included if
we use a cluster model including multiple TM ions and take the
additional electronic configuration corresponding to the metal–
metal CT in the CI. In practice, this approach is only available
for a small number of systems since, in most cases, the number
of Slater determinants, i.e. the size of the Hamiltonian matrix,
becomes too large to solve with the present computational
power.

Figures 4 and 5 show the theoretical TM-L2,3 XANES
of SrTiO3 and NiO, respectively, calculated by the DFT–
CI method without the CT configurations (b) and with CT
configurations (c). The former calculation includes only the
ligand field (LF) effects, while the latter one does include both
LF effects and CT effects. Here, we refer to these two types
of calculations as the ‘LF multiplet’ approach and ‘LF + CT
multiplet’ approach, respectively. They are compared with
experimental spectra (a). One can clearly observe that, in
both oxides, the spectral shapes change by including the CT
from φO 2p to φ3d orbitals. In the case of SrTiO3, the L2

peaks are much more broadened by the CT, though the constant

Figure 4. Experimental spectrum of Ti L2,3 XANES for SrTiO3

taken from [38] (a) compared with four different theoretical spectra:
(b) ligand field multiplet calculation by the DFT–CI method,
(c) charge transfer multiplet calculation by the DFT–CI method,
(d) ligand field multiplet calculation by the CTM method
(10Dq = 2.5 eV) and (e) charge transfer multiplet calculation by the
CTM method (10Dq = 2.2 eV, � = 4 eV, U2p3d − U3d3d = 2 eV,
hopping V (eg) = 2 eV). Solid bars drawn with theoretical spectra are
the oscillator strengths for the many-electron eigenstates. The
theoretical spectra in (d) and (e) are shifted so as to align the first
main peak of the L3-edge with that in (c).

broadening factor is used in the calculation. In the case of NiO,
the L3/L2 intensity ratio, i.e. the branching ratio, significantly
decreases by including the CT. The double peak feature on
the L2-edge becomes much clearer, and the small satellite
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Figure 5. Experimental spectrum of Ni L2,3 XANES for NiO (a)
compared with four different theoretical spectra: (b) ligand field
multiplet calculation by the DFT–CI method, (c) charge transfer
multiplet calculation by the DFT–CI method, (d) ligand field
multiplet calculation by the CTM method (10Dq = 1.2 eV) and (e)
charge transfer multiplet calculation by the CTM method
(10Dq = 0.9 eV, � = 3.5 eV, U2p3d − U3d3d = 1 eV, hopping
V (eg) = 2 eV). Solid bars drawn with theoretical spectra are the
oscillator strengths for the many-electron eigenstates. The theoretical
spectra in (d) and (e) are shifted so as to align the first main peak of
the L3-edge with that in (c).

peaks appear at the higher energy region of both L3- and L2-
edges in the LF + CT multiplet approach. In both oxides, the
theoretical spectra from the LF + CT multiplet approach show
better agreement with the experimental results than those from
the LF multiplet approach.

Table 5. Composition of each electronic configuration at the initial
states of TM-L2,3 XANES.

Configuration Composition

SrTiO3 (LF) (φO 2p)
36(t2g)

0(eg)
0 1.000

SrTiO3 (φO 2p)
36(t2g)

0(eg)
0 0.950

(LF + CT) (φO 2p)
35(t2g)

1(eg)
0 0.036

(φO 2p)
35(t2g)

0(eg)
1 0.014

NiO (φO 2p)
36(t2g)

6(eg)
2 0.591

(LF) (φO 2p)
36(t2g)

5(eg)
3 0.390

(φO 2p)
36(t2g)

4(eg)
4 0.018

NiO (φO 2p)
36(t2g)

6(eg)
2 0.913

(LF + CT) (φO 2p)
36(t2g)

5(eg)
3 0.003

(φO 2p)
36(t2g)

4(eg)
4 0.000

(φO 2p)
35(t2g)

6(eg)
3 0.084

(φO 2p)
36(t2g)

5(eg)
4 0.000

In order to investigate the CT effects in detail,
configuration analysis of many-electron wavefunctions has
been carried out. Considering the orthonormality of the Slater
determinants, the composition of the pth Slater determinant in
the kth eigenstate is simply given by |Cpk |2. Table 5 shows
the compositions of each electronic configuration at the initial
state of TM-L2,3 XANES for SrTiO3 and NiO. In the case of
SrTiO3, the initial state obtained by the LF multiplet approach
is completely composed of the (t2g)

0(eg)
0 configuration. In the

LF + CT multiplet approach, the initial state is still dominated
by the (t2g)

0(eg)
0 configuration, whose composition at the

initial state is 95.0%. The contributions of the charge transfer
configurations, (t2g)

1(eg)
0(φO 2p)

−1 and (t2g)
0(eg)

1(φO 2p)
−1,

are small.
In the case of NiO, in contrast, the contribution of each

configuration is significantly changed when the CT is included.
In the one-electron scheme, the initial configuration of NiO
can be described as 100% (t2g)

6(eg)
2. The result of the

LF + CT multiplet approach shows that the contribution of
the (t2g)

6(eg)
2 configuration increases to 91.3% at the initial

state. The charge transfer configuration, (t2g)
6(eg)

3(φO 2p)
−1,

also contributes 8.4% at the initial state. Although we will take
account of all configurations for the XANES calculations to
describe the initial state, the (t2g)

6(eg)
2 configuration is found

to be predominant, which agrees well with our intuition.
On the other hand, the result of the LF multiplet approach

shows that the contribution of (t2g)
6(eg)

2 is only 59.1%. The
(t2g)

6(eg)
2 configuration strongly interacts with the (t2g)

5(eg)
3

configuration, whose composition is 39.0% at the initial state.
The large discrepancies in the two theoretical spectra can be
ascribed to the difference of the (t2g)

5(eg)
3 composition at

the initial states. This result is far from our intuition, and is
physically unreliable. This is because of the strong restriction
of electronic configurations. In the LF multiplet approach,
the electronic correlations among the ligand hole and φ3d

electrons, which contribute to reduce the total inter-electron
interaction energies, are completely neglected. The abnormally
large contribution of (t2g)

5(eg)
3 in the LF multiplet result may

have occurred to reduce the inter-electron interaction in the
spatially localized φ3d orbitals within the restricted electronic
configurations. In fact, the Coulomb interaction among t2g

is much larger than that among eg or that between t2g and

12
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Figure 6. Theoretical Ti L2,3 XANES of SrTiO3 by the DFT–CI
method including the charge transfer. Middle and lower panels show
the compositions of (φ2p)

5(φO 2p)
36(φ3d)

1 and (φ2p)
5(φO 2p)

35(φ3d)
2

configurations for the many-electron eigenstates, respectively, where
the contributions of L3 and L2 configurations are distinguished by the
different colors. (In the online version, the compositions of four final
configurations are distinguished by the different colors: green
(φ2p1/2)

2(φ2p3/2)
3(φO 2p)

36(φ3d)
1, red (φ2p1/2)

1(φ2p3/2)
4(φO 2p)

36(φ3d)
1,

blue (φ2p1/2)
2(φ2p3/2)

3(φO 2p)
35(φ3d)

2 and orange
(φ2p1/2)

1(φ2p3/2)
4(φO 2p)

35(φ3d)
2.)

eg (see table 2). The CT configurations are indispensable to
describe the initial state properly in the case of NiO.

It should be noted that the composition of the charge
transfer configuration, (φ2p)

6(φO 2p)
35(φ3d)

n+1, at the initial
state in the LF + CT multiplet approach is much smaller
than the composition of (2p)6(3d)

n+1
L in the charge transfer

multiplet theory. This is because the covalency is already
included by using the MOs (φ3d) instead of AOs (3d) in the
former case, while that is included through the mixing of the
(2p)6(3d)

n+1
L configuration in the latter case.

The charge transfer configurations also contribute to
the final state of TM-L2,3 XANES. Figures 6 and 7
show the contribution of the (φ2p)

5(φO 2p)
36(φ3d)

n+1 and
(φ2p)

5(φO 2p)
35(φ3d)

n+2 configurations at the final states for
SrTiO3 and NiO in the LF + CT multiplet approach. The
contributions of L3 and L2 configurations are distinguished by
the different colors. The calculated PACS and the oscillator
strengths are also shown in the top panels. Although only a part
of these components significantly contribute to the oscillator
strength, the diagram is quite useful for a detailed analysis of
the spectral shape.

In the case of SrTiO3, the number of final states for
Ti L2,3 is 9780. Almost semi-continuous multiplet levels can
be seen in figure 6. The eigenstates below 460 eV, which
are responsible for the first main peak at the L3-edge and
the small shoulder peaks located at the lower energy region,
are predominantly composed by the (φ2p3/2)

−1(φ3d)
1 (lighter-

Figure 7. Theoretical Ni L2,3 XANES of NiO by the DFT–CI
method including the charge transfer. Middle and lower panels show
the compositions of (φ2p)

5(φO 2p)
36(φ3d)

9 and (φ2p)
5(φO 2p)

35(φ3d)
10

configurations for the many-electron eigenstates, respectively, where
the contributions of L3 and L2 configurations are distinguished by the
different colors. (In the online version, the compositions of four final
configurations are distinguished by the different colors: green
(φ2p1/2)

2(φ2p3/2)
3(φO 2p)

36(φ3d)
9, red (φ2p1/2)

1(φ2p3/2)
4(φO 2p)

36(φ3d)
9,

blue (φ2p1/2)
2(φ2p3/2)

3(φO 2p)
35(φ3d)

10 and orange
(φ2p1/2)

1(φ2p3/2)
4(φO 2p)

35(φ3d)
10.)

colored bars in the middle panel) configuration. The small
contribution of the (φ2p3/2)

−1(φ3d)
2(φO 2p)

−1 (darker-colored
bars in the lower panel) configuration is found in this region.
In contrast, the eigenstates above 460 eV are predominantly
composed by the (φ2p3/2)

−1(φ3d)
2(φO 2p)

−1 (darker-colored
bars in the lower panel) and (φ2p1/2)

−1(φ3d)
2(φO 2p)

−1 (lighter-
colored bars in the lower panel) configurations. In particular,
at the eigenstates which are responsible for the L2 peaks (462–
470 eV), the composition of the (φ2p1/2)

−1(φ3d)
1 configuration

(darker-colored bars in the middle panel), which is a dipole-
allowed configuration from the (φ3d)

0 configuration, becomes
significantly smaller in this energy region. In fact, the
composition of the (φ2p1/2)

−1(φ3d)
1 configuration is at most

8%, and smaller than 4% in most states. Hence, the oscillator
strength at each eigenstate in this energy region becomes much
smaller than those in the case of the LF multiplet approach
(see figure 3). In the case of the LF + CT multiplet approach,
however, many more numbers of eigenstates contribute to the
Ti L2 peaks, and they are widely distributed in the range 463–
468 eV. As a result of this, the L2 peaks are much broadened
compared with those calculated by the LF multiplet approach.

The contribution of the CT at the final states is much
simpler in the case of NiO than SrTiO3. The number of
final states for Ni L2,3 XANES is only 276 even including
the CT configurations. One can hardly see the interaction
among the four configurations, i.e. (φ2p3/2)

−1(φ3d)
9,

(φ2p3/2)
−1(φ3d)

10(φO 2p)
−1, (φ2p1/2)

−1(φ3d)
9 and (φ2p1/2)

−1
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(φ3d)
10(φO 2p)

−1 in figure 7. The main structures of the
L3- and L2-edges are purely composed by (φ2p3/2)

−1(φ3d)
9,

and (φ2p1/2)
−1(φ3d)

9, configurations, respectively. The charge
transfer configurations only contribute to form the small
satellite peaks. It is noteworthy that the eigenstates which
are responsible for the satellite peak located around 862 eV
(880 eV) are 100% composed of (φ2p3/2)

−1(φ3d)
10(φO 2p)

−1

((φ2p1/2)
−1(φ3d)

10(φO 2p)
−1) configurations. The electric

dipole transition from (φ3d)
8 to this configuration is not

allowed. The dipole transition from the (φ3d)
9(φO 2p)

−1

configuration, which is the minor component at the initial state
of NiO, contributes to the oscillator strengths. Therefore, the
CT effects both at initial and final states contribute to the
formation of the satellite peaks in Ni L2,3 XANES.

Note again that in the CTM model the large mixing
between (2p)5(3d)

9
and (2p)5(3d)

10
L is found at the final

states of Ni L2,3 XANES [41]. In the ab initio CI method based

on MOs, the mixing between (2p)5(3d)
9

and (2p)5(3d)
10

L has
been included as the covalent bonding between Ni 3d and O 2p
orbitals.

4.5. Comparison between the ab initio CI method and the
CTM method

In figures 4 and 5, theoretical TM-L2,3 XANES of SrTiO3 and
NiO obtained by the LF multiplet (d) and the CT multiplet
calculations (e) with the CTM4XAS program are also shown for
comparison. They are shifted to align the first main peaks of
the L3-edge to the LF + CT multiplet result by the ab initio
CI method (c). In the CTM calculations, energy-dependent
broadening factors are used. The broadening factor for the
L2-edge is larger than that for the L3-edge. In the case of
SrTiO3, the results of the ab initio CI method and the CTM
method are consistent. In the LF multiplet calculations, the
branching ratio and the small shoulders located below the
first main peak of the Ti L3-edge are well reproduced in both
methods. In the CT+LF multiplet calculations, the numbers
of final states contributing to the Ti L2,3 XANES are different
in those two methods because of the different treatment of
ligand orbitals. Nevertheless, the spectral features are almost
identical. The multiplet structures at the final states are widely
spread especially in the Ti L2-edge. Small satellite peaks
around 470 eV are found in both figures 4(c) and (e).

In the Ti L2,3 XANES of SrTiO3, the small and broad
satellite peaks have been observed at about 6 and 11 eV higher
energy than the second main peak in the L2-edge [42]. Okada
et al have made the charge transfer multiplet calculation for
SrTiO3 and have concluded that those satellite peaks can be
ascribed to the ligand–metal charge transfer [43]. In the
present CTM and the ab initio CI calculations, those satellite
peaks are reproduced (not explicitly shown in figures 4(c)
and (e)). However, they are shifted to higher energy by about
4 eV, which might be improved by including additional higher
charge transfer channels.

In the case of Ni L2,3 XANES of NiO, the LF multiplet
results by the ab initio CI method and by the CTM method
are significantly different. The large discrepancies between
those two spectra can be ascribed to the large difference of the

(t2g)
6(eg)

2 composition at the initial states. As mentioned in
section 4.4, the contribution of the (t2g)

6(eg)
2 configuration is

abnormally small in the case of the LF multiplet calculation
by the ab initio CI method because of the large reduction of
two-electron integrals from atomic values. In the case of the
CTM calculation, the atomic values were adopted for the inter-
electron interactions. The contribution of (t2g)

6(eg)
2 is 99% at

the initial state.
When the CT configuration is added, the characteristic

features of the experimental spectrum (figure 5(a)) are
reproduced by both ab initio CI and the CTM methods
(figures 5(c) and (e)). The charge transfer satellite peaks
are also reproduced by both methods. Comparing the
two theoretical spectra, however, several differences can be
recognized. In the case of the ab initio CI method, the
positions of CT satellite peaks are shifted about 2 eV to higher
energy compared with the CTM result and the experimental
spectrum. This might be improved by properly taking the band
structures of ligands in the solid state. In addition, the energy
separation between the L3 and the L2-edges is overestimated
in the ab initio CI method because of neglecting the relativistic
effects for inter-electron interactions [20].

One can also find that the intensity ratios between the
two L2 peaks in the ab initio CI and CTM results are slightly
different from those in the experimental spectrum. It has been
shown that the Ni L2,3 XANES of NiO is sensitive to the
super-exchange interaction coupling the spins on the different
Ni sites. Alders et al have reported the clear temperature
dependence of the Ni L2 part of XANES for 20 monolayers
of NiO on MgO(100) [44]. This effect can be simulated by
adding an exchange field to the ground states by including the
3d spin–orbit coupling. In the present calculations, 3d spin–
orbit coupling was taken into account, but the exchange field
due to the spin–spin correlations on the different Ni sites is not
taken into account.

5. Alternative approaches

Other routes to the multiplet calculation of L2,3 XANES, which
explicitly treat the interaction between a core–hole and excited
electron in conjunction with band structures in solids, have
been reported by several groups. Zaanen et al developed a
two-particle Green’s function method which treats the fully
atomic Coulomb and exchange interactions as well as the solid
state band structure method [45]. The spectral shapes were
affected by the 3d partial density of states. In their calculations,
however, the 3d bands were always empty at the ground
state. In other words, the interactions between a core–hole
and the excited electron to the pre-existing 3d electrons were
neglected. As mentioned in the literature, this approximation
is only expected to be valid when the 3d bandwidths are
much larger than the U3d3d and U2p3d. For systems with
narrow d-bands, like ionic compounds, the interaction among
3d electrons cannot be neglected in the ground state.

The multiple scattering (MS) method based on the single-
particle approximation has been applied for the calculation of
L2,3 XANES of Cu and Co metals by the group of Rehr [46].
After that, Krüger and Natoli have applied the multi-channel
multiple scattering (MCMS) theory for the calculations of Ca
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L2,3 XANES for Ca metal and CaO and CaF2 [47]. In the

MCMS method, the multiplet structure of (2p)5(3d)
1

final
states was rigorously calculated. Similar to the DFT–CI
method, the interaction with the other electrons was taken into
account through the effective one-electron potential optimized
for the system. The MCMS method can handle the larger
cluster models including several hundred atoms, and thus
can include solid state effects more accurately. This method
is feasible for the calculation of TM-L2,3 XANES for both
metallic and insulating compounds. However, as yet the
MCMS method is limited to systems that have an empty 3d
band in the ground state.

The band structure calculation based on the Bethe–
Salpeter equation (BSE) has also been applied to the TM-
L2,3 XANES of d0 systems by Shirley [48]. The two-particle
equation for the core–hole and the excited electron has been
solved. The core–hole screening effects have been treated
within the random phase approximation [49]. In this method,
the XANES spectra have been calculated by the plane-wave-
based pseudopotential and the solid state effects are de facto
included. Similar methods based on the time-dependent DFT
(TD-DFT) have been used by the groups of Ebert and Rehr
[50, 51].

Compared to the CTM or the ab initio CI approaches,
the methods discussed can treat the solid state effects more
accurately. This is quite important for the L2,3 XANES
of metallic or highly covalent compounds, in which the 3d
orbitals are spatially delocalized and form wide 3d bands. In
those systems, more than one TM atom should be included in
the models. As already mentioned in section 4.4, the ab initio
CI calculations using the cluster models including multiple
TM sites are available for few systems due to the limitation
of computational power. The CTM approach cannot handle
cluster models including multiple TM sites.

A big problem of these methods is that neither the
multiplet structures of the strong correlation among 3d
electrons nor the charge transfer effects are treated correctly.
In the MCMS method, these effects can be included by
taking additional channels into the CI with the expense of
computational cost. In the other two methods, these effects
cannot be included in a straightforward manner since they are
based on the two-particle theory. In the CTM and the ab initio
CI approach, both multiplet and CT effects are explicitly
considered.

6. Outlook

In this paper, the two different methods to calculate the
L2,3 XANES for 3d transition-metal (TM) compounds are
reviewed. One is the semi-empirical charge transfer multiplet
(CTM) approach and the other is the relativistic configuration-
interaction method in quantum chemistry which is an ab initio
approach except for the peak broadness. In the ab initio CI
method, the multiplet structure is described based on molecular
orbitals (MOs) instead of atomic orbitals (AOs). This is the one
of the largest differences between the ab initio CI method and
the CTM approach. All ligand field effects including the crystal
field and the covalent bonding between a TM ion and the ligand
atoms are automatically included by using MOs. The reduction

of the two-electron integrals from the atom to the solid state
is found by the ab initio CI method. The larger the covalent
bonding between the TM atom and ligands becomes, the more
the two-electron integrals are reduced.

The charge transfer effects are treated as the configuration
interactions among two or more electronic configurations,
e.g. 3dn + 3dn+1 L in the CTM approach and (φ3d)

n +
(φ3d)

n+1(φO 2p)
−1 in the ab initio CI method. The charge

transfer multiplet structure can be calculated in an ab initio
manner by the latter method. The contribution of the charge
transfer energy � and the hopping parameters T used in the
CTM approach are rigorously calculated using the one- and
two-electron integrals over MOs. The composition of the
charge-transferred configuration in the ab initio CI method is
much smaller than that in the CTM approach at both initial
and final states of TM-L2,3 XANES. This is because a part
of the charge transfer in the CTM approach is taken into
account as the covalency between the TM ion and the ligand
atoms which is included by using the MOs in the case of the
ab initio CI method. Future developments should include the
addition of more and other charge transfer channels, depending
on the systems studied. This should include the addition of
at least two metal sites, for example in a M2O9 or M2O11

cluster. Within the present program and computer power, such
calculations are not possible yet in most cases.
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